LIGO Next to lowest order approximation of LIGO I

Hiro Yamamoto

LIGO 2004

G040514-E

With a little bit of reality

A simplified picture of

- □ "What's going on ?"
- □ Thermal lensing
- Sideband imbalance
- □ Effect of locking
- Output Mode Cleaner
- Optical gain, Spob, contrast defect, etc, etc
- Correlation between DC-picth/yaw and WFS signal

Tools

Tool	Pros	Cons
Analytic calculation	Underlying mechanism can be understood	Only simplified case can be analyzed
e2e	 Time evolution can be traced Semi-realistic sensing and controls can be included 	 Limited spatial profile No details of optics
FFT	Details of optics can be included (Phase map, Thermal lens)	□Only static

Modal Model, not so bad

- » Modal Model can be used to study degenerate and/or unstable cavity
- » Valid only when perturbation is small
- » Field source mode is more important than cavity eigenstates

G040514-E

Thermal lensing and n_{effective}

- P. Willems calculated based on MIT model -

Mode matching

Mode matching with BS

LIGO ITM differential heating and beam splitter curvature

- Linear line : gaussian
- Blue vs red : sideband imbalance
- --- vs + + + : astigmatism

Effects of mode matching in PRM

- Carrier field is insensitive to thermal state of ITMs and BS curvature
 - » CR reflected by arm does not have higher mode excited
 - » SB reflected has higher order mode excited due to curvature mismatch
- Michelson cavity can induce imbalance of upper and lower sidebands
 - » Oscillation phase part change sign, but Gouy phase and terms due to mode mixing are SB sign independent.
 - » Sideband imbalance in PRM is observable when two cavities in PRM are different

Propagator =
$$1 - r_{RM} \cdot r_{ITM} \cdot \exp(-i\phi)$$

 $\phi = k_{SB} \cdot d\ell_{snp} - c_1 \cdot \eta - c_2 \cdot \alpha^2$

G040514-E

Reflection by arm cavity with curvature mismatch

G040514-E

LIGO Science seminar, Nov.30,04

10

Sideband imbalance in curvature mismatched FPs

$$P(\kappa_{SB}L_{1}, \alpha_{1}) + P(\kappa_{SB}L_{2}, \alpha_{2})$$

= $P(-k_{SB}L_{1}, \alpha_{2}) + P(-k_{SB}L_{2}, \alpha_{1})$

G040514-Е

IFO performance

SB imbalance comes from $R_{\rm ITM}$ and $R_{\rm BS}$

FFT vs LSC lock

modes in the dark port - back on the envelope -

modes in the dark port - e2e simulation -

OMC and ASQ and ASI (1) nominal matching

G040514-E

OMC and ASQ and ASI (2) better matching

AS1

AS3

2.5

differential heating α~0 use dark port signal to lock

time (sec) Q demod 40 30 Symmetric arm 20 common heating 10 $\alpha \sim 0.01$ -10dark port signal -20 -30 -400 5 10 15

5

-5

-10

0

5

Q demod

10

time (sec)

0

5

10

time (sec)

15

I demod

AS1

AS3

20

20

G040514-E

LIGO Science seminar, Nov.30,04

20

Effect on length DOF

G040514-E

Beam positioning on WFS head T030290(Luca, etc), eLog(Keita on Nov.18,04)

e2e simulation for 1.45 seconds at different thermal states

Dark Port beam profile by FFT - ideal vs reality-prime -

