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Questions to be answered

Why neutrinos?
Why the South Pole?
Why high energies?
What will we learn?
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Why neutrinos?

• ν’s can escape from high-density, 
energetic environments (photons can’t)

• ν’s have no charge, so they do not get 
deflected by magnetic fields (cosmic 
rays do)

• ν’s are not absorbed/scattered by 
matter along the way (photons are)
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Why neutrinos?

• At very high energies, photons do 
not make it to Earth because 
they’re likely to interact with the 
Cosmic Microwave Background:

γ γ ++ γγCMBCMB           ee++ ++ ee--
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Why neutrinos?

• Accelerator (could be 
a blazar jet, or 
supernova shock)

• Target (could be 
external radiation 
field, or molecular 
cloud)

• Neutrinos emerge 
undeflected
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How to build a ν detector

• Use the phenomenon of Cherenkov light
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How to build a ν detector

• Detect the Cherenkov 
light with an array of 
sensors

• Reconstruct the 
particle’s direction

• Infer the direction of 
the original neutrino 
(unavoidable error of 
~ 1 degree)
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How to build a ν detector

• Look for the neutrino’s interaction product (e,µ,τ)
• Use the earth as a filter

• 1:1,000,000 
background rejection!

Earth

Detector

cosmic ray

Extragalactic
ν

Atmospheric
ν

µ
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Why the South Pole?

• We need something 
transparent (water or ice)

• We need a large volume of it
• We need electricity, food, 

airplanes, and other 
infrastructure
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South PoleSouth Pole

Dark sector

AMANDA

IceCube
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Why the South Pole?

• Absorption length 
>100 meters

• Scattering length 
~25 meters

• Radioactivity 
negligible (only 
what we put 
down: 40K in glass)

• Properties mapped 
with in-situ
lasers/LED’s
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Water vs. Ice?

Water:

Long scattering length
Short absorption length
40K radioactivity
Bioluminescence
Biofouling
Access to ships difficult
Access year-round
Repairable

Ice:

Short scattering length
Long absorption length
Pure, no radioactivity
No critters
No movement/currents
Stable platform
Summer operations only
Not repairable
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The AMANDA detector

• Construction began in 
1995 (4 strings)

• AMANDA-II 
completed in 2000 (19 
strings total)

• 677 optical modules
• 200 m across
• ~500 m tall (most 

densely instrumented 
volume)
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Optical Module

• Glass pressure 
housing protects 
PMT from forces of 
the ice

• Gel provides optical 
coupling between 
glass and PMT 
photocathode

Photomultiplier
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Optical Module deployment
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Optical Module deployment
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Seven Wonders of Modern Astronomy

The Sharpest              The Biggest             The Farthest Flung

The Most Extensive          The Swiftest             The Deadliest

The Wierdest

www.sciam.com/1999/1299engineering/1299musser.html
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A real event in AMANDA

• Realtime
filtering is 
performed at the 
Pole (sorry, it’s 
summertime 
now!)

tim
e

tim
e



Caltech, January 13, 2004

The IceCube observatory

• 80 strings
• 4800 optical 

modules
• 1 km3 volume
• First strings to be 

deployed in Dec. 
2004

• AMANDA 
contained within 
IceCube

1400 m1400 m

2400 m2400 m

AMANDAAMANDA

South PoleSouth Pole

IceTopIceTop

RunwayRunway
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Size perspective
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Size perspective

50 m
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Size perspective

50 m
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The IceCube hose reel
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Digital Optical Module

• Self-triggers on each pulse
• Captures waveforms
• Time-stamps each pulse
• Digitizes waveforms
• Performs feature 

extraction
• Buffers data
• Responds to Surface DAQ
• Set PMT HV, threshold, etc



Caltech, January 13, 2004

Digital Optical Module

Design parameters:

• Time resolution: < 5 ns
rms

• Waveform capture:
>250 MHz for first 500 ns
~ 40 MHz for 5000 ns

• Dynamic Range:
> 200 PE / 15 ns
> 2000 PE / 5000 ns

• Dead-time: < 1%
• OM noise rate: < 500 Hz   

(40K in glass sphere)
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Why high energies?

• MeV energies: neutrinos from the sun, 
supernovae

• GeV energies: neutrinos from the 
atmosphere (cosmic ray showers)

• TeV and PeV energies: neutrinos from 
AGN, cosmic ray accelerators, and 
more!
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Science goals and results

• Neutrino flavor identification
• Supernova search
• Neutrino point sources
• Diffuse extragalactic neutrinos
• GRB search
• WIMP search
• Cosmic ray composition
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Particle identification

IceCube
• Solid: particle 

ID, direction, 
and energy

• Shaded: 
energy only νµ

ντ

νe

Log(energy/eV)
12 18156 219

νe
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µ neutrinos

• Long “track-like” 
light pattern

• CC interaction:

νµ + N → µ + X
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e neutrinos

• Length of the 
cascade is small 
compared to the 
spacing of sensors.

• Roughly spherical 
density distribution 
of light.

Energy = 375 Energy = 375 TeVTeVEnergy = 375 Energy = 375 TeVTeV
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τ neutrinos

• “Double-bang” 
signature (one cascade 
from the ν interaction, 
the other from the τ
decay)

• Two “bangs” are 
hundreds of meters 
apart for a PeV τ
neutrino. 

• Expected from 
astrophysical sources 
because of oscillations
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Energy measurement

Eµ= 10 TeV Eµ= 6 PeV
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Particle identification

νµ

ντ

νe

Log(energy/eV)
12 18156 219

νe
• Supernova 

detection
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Supernova detection

• Neutrinos from a 
supernova are too low-
energy to be detected 
individually by 
IceCube

• However, a flood of 
MeV neutrinos would 
result in an increase of 
the darknoise rate in 
all OM’s

Count rates



Caltech, January 13, 2004

Amanda-II

Amanda-B10

IceCube

B10: 
60% of Galaxy    

A-II:
95% of Galaxy

IceCube:
up to LMC
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Atmospheric neutrinos

• AMANDA-B10: ~300 per year
• AMANDA-II: ~4 per day (real-time!)
• IceCube: ~300 per day

1997 data:
Contamination by 
cosmic ray muons: 
<10%
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Diffuse search

EE22 Φ Φ 
< 0.84 < 0.84 xx1010--6 6 GeV cmGeV cm--22 ss--11 srsr--11

Simulated AGN with 
10-5 E-2 GeV-1 cm-2 s-1 sr-1

full: experiment

dotted: simulated atmos. ν
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Diffuse search

AMANDA II
sensitivity
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Point source search

AMANDA-II
• Cuts optimized 

for each 
declination band 

• Analysis 
developed with 
azimuth-
scrambled data 
for blindness

2000 data:
Contamination by cosmic 
ray muons: <10% (above 
110 degrees)
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Point source search

• A sky full of upper limits
(integrated above 10 GeV, units: 10-7 cm-2 s-1)
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Point source search

• Preliminary results for individual 
sources

E2Φν (10-8 cm-2s-1)

Source           Dec             1997          2000 
Crab               22                 4.2            2.4
Mkn421         38.2            11.2            3.5
Mkn501         39.8              9.5            1.8
Cygnus X-3   41.5              4.9            3.5
Cass. A          58.8              9.8            1.2
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GRB search

• By using GRB time as a cut, other cuts 
can be loosened, giving a high signal 
efficiency

• How many do we expect?  About 1 per 
100 bursts per km2

So far?  From 317 BATSE bursts from 1997So far?  From 317 BATSE bursts from 1997--2000, 2000, 
no coincident neutrinos observed with AMANDAno coincident neutrinos observed with AMANDA

On-time: 10 minutes

Off-time: 2 hours
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WIMP annihilation

χχ

qq
ll

WW
ZZ,

Higgs…

νµ

Earth

Detector

χ

νµ

µ
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WIMP annihilation

WIMP annihilationWIMP annihilation

at Earth’s centerat Earth’s center

IceCube (earth)

IceCube (sun)
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WIMP annihilation

WIMP annihilationWIMP annihilation

at Earth’s centerat Earth’s center

IceCube (earth)

IceCube (sun)

IceCube (earth)
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Cosmic ray composition
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Cosmic ray composition

SPASE air shower arraysSPASE air shower arrays

•The SPASE air shower 
array measures electron 
component of the shower
•AMANDA measures the 
h.e. muon component of 
the shower

µ

µ

ee
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Cosmic ray composition

• Muon properties measured using 
photon LDF, sampled by detector 
over large distances

µ

µ
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Cosmic ray composition

• Plot muons vs. 
electrons

• Transformed 
axes correspond 
to mass and 
energy

log(E/GeV)
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Cosmic ray composition

• Data show increasing average mass
• Good energy resolution
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IceTop

• Surface array 
composed of 
frozen water tanks

• Air shower 
threshold: ~1 PeV

• Will serve as:
– calibration source
– UHE veto 
– cosmic ray 

composition 
beyond the knee

1400 m1400 m

2400 m2400 m

AMANDAAMANDA

South PoleSouth Pole

IceTopIceTop

RunwayRunway
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IceTop tanks
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New techniques at UHE

• Past 1 PeV, the earth 
begins to become opaque 
to neutrinos

• τ neutrinos still appear 
upgoing (regeneration)

• Can search for all flavors 
in the downgoing 
direction

• Background: cosmic ray 
muons (high-energy tail)

Earth

Detector

ν ν

µ

ν
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Tau neutrinos
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Conclusions

• AMANDA, currently operating, is 
running well and exploring a variety of 
physics topics. 

• IceCube will be a powerful instrument 
for exploring the universe in neutrinos:
– All three flavors
– TeV, PeV and above (and below!)
– Construction has begun!



Caltech, January 13, 2004

The IceCube collaboration

• Chiba University, Chiba, Japan 
• Clark Atlanta University, Atlanta, GA
• DESY-Zeuthen, Zeuthen, Germany 
• Imperial College, UK
• Institute for Advanced Study, Princeton, 

NJ
• Lawrence Berkeley National 

Laboratory, Berkeley, CA
• Pennsylvania State University, 

Philadelphia, PA
• South Pole Station, Antarctica 
• Southern University and A & M 

College, Baton Rouge, LA
• Stockholm Universitet, Stockholm, 

Sweden 
• Universität Mainz, Mainz, Germany 
• Universität Wuppertal, Wuppertal, 

Germany

• Université Libre de Bruxelles, Bruxelles, 
Belgium

• Université de Mons-Hainaut, Mons, Belgium
• University of Alabama, Tuscaloosa, AL 
• University of California-Berkeley, Berkeley, 

CA 
• University of Delaware, Newark, DE
• University of Kansas, Lawrence, KS
• University of Maryland, College Park, MD
• University of Wisconsin-Madison, Madison, 

WI
• University of Wisconsin-River Falls, River 

Falls, WI
• Universidad Simon Bolivar, Caracas, 

Venezuela 
• Uppsala Universitet, Uppsala, Sweden 
• Vrije Universiteit Brussel, Brussels, Belgium 
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Backup slides
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IceTop tanks

Two Ice Tanks
3.6 m2 x 1 m

Two DOMs: 10” PMT
High Gain w/station coincidence: 1 p.e. resol
Low Gain: 1  resol

To DAQ

IceCube
Drill Hole

15 m
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New techniques at UHE

• At high energies, 
the earth becomes 
opaque to 
neutrinos
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What we can learn from light
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Angular resolution of IceCube

0.8°
0.6°
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Effective area vs. zenith angle 
(downgoing  muons rejected)

Effective area vs. muon energy 
(trigger, atm µ, pointing cuts)

Effective area of IceCube

cos θ

A
ef

f / 
km

2
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Diffuse Fluxes Point Sources

Sensitivity of IceCube
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Expected sensitivity 
AMANDA 97-02 data

4 years Super-Kamiokande

8 years 
MACRO

170 days
AMANDA-B10

-90 0-45 9045

10-15

10-14

µ
⋅c

m
-2

s-1

declination (degrees)

southern
sky

northern     
sky

SS-433

Mk-421 ν/γ ~ 1
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Cascade search

0.50Prompt charm 
(RQPM)

0.15νe (CC), νe+νµ (NC)

Predicted events
in 100% of 2000 
data

Atmospheric ν’s

3.2Φντ+ντ
= 10-6 E-2

GeV cm-2 s-1

5.5Φνe+νe = 10-6 E-2

GeV cm-2 s-1

Predicted events
in 100% of 2000 
data

Astrophysical ν’s

Cascade limits

90% C.L. limit 
νµ+νe+ντ (130 days):

E2Î(E) < 9.8 ·10 -6

GeV cm-2 s-1 sr-1
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EHE search

EHE events very bright; many 
PMTs detect multiple photons 

Expect only  events 
near horizon

R
µ ≥ 10 km

Preliminary Limit 

ve
rti

ca
l

Diffuse up Diffuse down

3 months B10

Main background: muon “bundles”
Comparable NPMT but less photons
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Diffuse search
atm

ospheric  neutrinos

W&BW&B

MPRMPR

DUMAND test string

FREJUS

NT-200
MACRO

AMANDA-B10
NT-200+

AMANDA-II

IceCube
down

up

prompt atm ν
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IceTop rates
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Pictures
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The Dome

The new 
station
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MAPO (Martin A. Pomerantz Observatory)
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LC-130 Hercules
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Halos
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Sunset
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Me
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Aurora Australis
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Nighttime
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Sunrise


