Exploring the high-energy universe with the AMANDA and IceCube detectors

Katherine Rawlins, MIT

Caltech, January 13, 2004 LIGO-G040558-00-R Why neutrinos? Why the South Pole? Why high energies? What will we learn?

Questions to be answered

Neutrinos

5

Visible

- v's can escape from high-density, energetic environments (photons can't)
 v's have no charge, so they do not get deflected by magnetic fields (cosmic rays do)
- v's are not absorbed/scattered by matter along the way (photons are)

Why neutrinos?

 At very high energies, photons do not make it to Earth because they're likely to interact with the Cosmic Microwave Background:

$\gamma + \gamma_{CMB} \longrightarrow e^+ + e^-$

Why neutrinos?

 Accelerator (could be a blazar jet, or supernova shock) Target (could be external radiation field, or molecular cloud) Neutrinos emerge undeflected

Why neutrinos?

• Use the phenomenon of Cherenkov light

How to build a v detector

- Detect the Cherenkov light with an array of sensors
- Reconstruct the particle's direction
- Infer the direction of the original neutrino (unavoidable error of ~ 1 degree)

How to build a v detector

How to build a v detector

Why the South Pole?

South Pole

Dark sector

AMÀNDA

Skiway

dett.

Dome

05

IceCube

a altanta

- Absorption length >100 meters
- Scattering length ~25 meters
- Radioactivity negligible (only what we put down: ⁴⁰K in glass)
- Properties mapped with *in-situ* lasers/LED's

Why the South Pole?

Water:

Long scattering length Short absorption length ⁴⁰K radioactivity Bioluminescence Biofouling Access to ships difficult Access year-round Repairable Ice:

Short scattering length Long absorption length Pure, no radioactivity No critters No movement/currents Stable platform Summer operations only Not repairable

Water vs. Ice?

- AMANDA-II completed in 2000 (19 strings total)
- 677 optical modules
- 200 m across
- ~500 m tall (most densely instrumented volume)

The AMANDA detector

- Glass pressure housing protects PMT from forces of the ice
- Gel provides optical coupling between glass and PMT photocathode

Optical Module

I c e C u b e

Optical Module deployment

I c e C u b e

Optical Module deployment

Seven Wonders of Modern Astronomy

The Sharpest

The Biggest

The Farthest Flung

The Most Extensive

The Swiftest

The Deadliest

The Wierdest

 Realtime filtering is performed at the Pole (sorry, it's summertime now!)

A real event in AMANDA

me

- 80 strings
- 4800 optical modules
- 1 km³ volume
- First strings to be deployed in Dec.
 2004
- AMANDA contained within IceCube

IceTop

1400 m

AMANDA

Pole

South

Runway

The IceCube observatory

Size perspective

Size perspective

Size perspective

The IceCube hose reel

- Self-triggers on each pulse
- Captures waveforms
- Time-stamps each pulse
- Digitizes waveforms
- Performs feature extraction
- Buffers data
- Responds to Surface DAQ
- Set PMT HV, threshold, etc

Digital Optical Module

Design parameters:

- Time resolution: < 5 ns rms
- Waveform capture:
 >250 MHz for first 500 ns
 ~ 40 MHz for 5000 ns
- Dynamic Range:
 > 200 PE / 15 ns
 > 2000 PE / 5000 ns
- Dead-time: <1%
- OM noise rate: < 500 Hz (⁴⁰K in glass sphere)

Digital Optical Module

- MeV energies: neutrinos from the sun, supernovae
- GeV energies: neutrinos from the atmosphere (cosmic ray showers)
- TeV and PeV energies: neutrinos from AGN, cosmic ray accelerators, and more!

Why high energies?

- Neutrino flavor identification
- Supernova search
- Neutrino point sources
- Diffuse extragalactic neutrinos
- GRB search
- WIMP search
- Cosmic ray composition

Science goals and results

<u>IceCube</u>

Solid: particle ID, direction, and energy
Shaded: energy only

Particle identification

Long "track-like" light pattern
CC interaction:
ν_μ + N → μ + X

µ neutrinos

Length of the cascade is small compared to the spacing of sensors.
Roughly spherical density distribution of light.

e neutrinos

- "Double-bang" signature (one cascade from the v interaction, the other from the τ decay)
- Two "bangs" are hundreds of meters apart for a PeV τ neutrino.
- Expected from astrophysical sources because of oscillations

τneutrinos

Energy measurement

lceCube

Ve e • Supernova detection 6 9 12 15 18 21

Log(energy/eV)

Particle identification

 Neutrinos from a supernova are too lowenergy to be detected individually by IceCube

• However, a flood of MeV neutrinos would result in an increase of the darknoise rate in all OM's

Supernova detection

B10: 60% of Galaxy

A-II: 95% of Galaxy

IceCube: up to LMC

<u>1997 data</u>: Contamination by cosmic ray muons: <10%

Atmospheric neutrinos

Diffuse search

Diffuse search

AMANDA-II

- Cuts optimized for each declination band
- Analysis developed with azimuthscrambled data for blindness

2000 data: Contamination by cosmic ray muons: <10% (above 110 degrees)

Point source search

• A sky full of upper limits (integrated above 10 GeV, units: 10⁻⁷ cm⁻² s⁻¹)

Point source search

Preliminary results for individual sources

Source	Dec	1997	2000	
Crab	22	4.2	2.4	
Mkn421	38.2	11.2	3.5	
Mkn501	39.8	9.5	1.8	
Cygnus X-3	41.5	4.9	3.5	
Cass. A	58.8	9.8	1.2	

 $E^2 \Phi_v (10^{-8} \text{ cm}^{-2} \text{s}^{-1})$

Point source search

• By using GRB *time* as a cut, other cuts can be loosened, giving a high signal efficiency

←→ On-time: 10 minutes

Off-time: 2 hours

 How many do we expect? About 1 per 100 bursts per km²

So far? From 317 BATSE bursts from 1997-2000, no coincident neutrinos observed with AMANDA

GRB search

Caltech, January 13, 2004

lceCube

WIMP annihilation at Earth's center

WIMP annihilation

WIMP annihilation at Earth's center

WIMP annihilation

Cosmic ray composition

SPASE air shower arrays

• The SPASE air shower array measures electron component of the shower

• AMANDA measures the h.e. muon component of the shower

Cosmic ray composition

e

μ

μ

Muon properties measured using photon LDF, sampled by detector over large distances

Cosmic ray composition

Cosmic ray composition

Data show increasing average mass

Good energy resolution

Cosmic ray composition

- Air shower threshold: ~1 PeV
- Will serve as:
 - calibration source
 - UHE veto
 - cosmic ray composition beyond the knee

2400 m€

1400 m

IceTop

AMANDA

Runway

littereren en son

111111111111

South Pole

IceTop tanks

Caltech, January 13, 2004

۲

- Past 1 PeV, the earth begins to become opaque to neutrinos
- τ neutrinos still appear upgoing (regeneration)
- Can search for all flavors in the downgoing direction
- Background: cosmic ray muons (high-energy tail)

New techniques at UHE

Caltech, January 13, 2004

D/tector

Tau neutrinos

- AMANDA, currently operating, is running well and exploring a variety of physics topics.
- IceCube will be a powerful instrument for exploring the universe in neutrinos:
 - All three flavors
 - TeV, PeV and above (and below!)
 - Construction has begun!

Conclusions

- <u>Chiba University</u>, Chiba, Japan
- <u>Clark Atlanta University</u>, Atlanta, GA
- <u>DESY-Zeuthen</u>, Zeuthen, Germany
- <u>Imperial College</u>, UK
- <u>Institute for Advanced Study</u>, Princeton, NJ
- <u>Lawrence Berkeley National</u> <u>Laboratory</u>, Berkeley, CA
- <u>Pennsylvania State University</u>, Philadelphia, PA
- South Pole Station, Antarctica
- <u>Southern University and A & M</u> <u>College</u>, Baton Rouge, LA
- <u>Stockholm Universitet</u>, Stockholm, Sweden
- <u>Universität Mainz</u>, Mainz, Germany
- <u>Universität Wuppertal</u>, Wuppertal, Germany

- <u>Université Libre de Bruxelles</u>, Bruxelles, Belgium
- <u>Université de Mons-Hainaut</u>, Mons, Belgium
- University of Alabama, Tuscaloosa, AL
- <u>University of California-Berkeley</u>, Berkeley, CA
- <u>University of Delaware</u>, Newark, DE
- <u>University of Kansas</u>, Lawrence, KS
- <u>University of Maryland</u>, College Park, MD
- <u>University of Wisconsin-Madison</u>, Madison, WI
- <u>University of Wisconsin-River Falls</u>, River Falls, WI
- <u>Universidad Simon Bolivar</u>, Caracas, Venezuela
- <u>Uppsala Universitet</u>, Uppsala, Sweden
- Vrije Universiteit Brussel, Brussels, Belgium

The IceCube collaboration

Backup slides

IceTop tanks

 At high energies, the earth becomes opaque to neutrinos

New techniques at UHE

What we can learn from light

Angular resolution of IceCube

Effective area vs. zenith angle (downgoing muons rejected)

Effective area vs. muon energy (trigger, atm μ , pointing cuts)

Effective area of IceCube

Diffuse Fluxes

Point Sources

Sensitivity of IceCube

Cascade limits

Astrophysical v's	<i>Predicted</i> events in 100% of 2000 data
$ \Phi_{\nu_e^+\nu_e} = 10^{-6} E^{-2} GeV cm^{-2} s^{-1} $	5.5
$\Phi_{v_{\tau}+v_{\tau}} = 10^{-6} \text{ E}^{-2}$ GeV cm ⁻² s ⁻¹	3.2
Atmospheric v's	Predicted events in 100% of 2000 data
v_{e} (CC), $v_{e}+v_{\mu}$ (NC)	0.15
Prompt charm (RQPM)	0.50

90% C.L. limit $\nu_{\mu} + \nu_{e} + \nu_{\tau}$ (130 days): $E^{2}\hat{I}(E) < 9.8 \cdot 10^{-6}$

I c e C u b e

Cascade search

e search GeV cm⁻² s⁻¹ sr⁻¹

EHE events very bright; many PMTs detect multiple photons

Main background: muon "bundles" Comparable N_{PMT} but less photons

Diffuse search

IceTop rates

Pictures

The new station

The Dome

1.1.1.1.1.1.1.1.1

.........

(CLD)

MAPO (Martin A. Pomerantz Observatory)
LC-130 Hercules

Sunset

Aurora Australis

-0

11.