Gravitational Waves from Hyper-Accretion onto Nascent Black Holes

Rafael A. Araya-Gochez Caltech/TAPIR

LIGO-G040560-00-R

Will discuss

- GRB engine: hyper-accreting black holes
- Magneto-Rotational (Instability) dynamics:
 - toroidal, non-axisymmetric MRI modes
 - v cooling ("alpha disk")
 - (large-scale) relativistic disk dynamics
- Quasi-Normal Ringing modes (a.k.a. Ring Down modes)
- Resonant Driving of QNR modes
- Strain Signal Strength (|h_{ij}^{TT}|)
- Future

Hyper-Accreting Black Holes

Hyper-novae scenario, basic ingredients

- death of a massive star $M_* \gtrsim 30-40 M_{\odot} (M_{He} > 12-16 M_{\odot})$
- secularly growing black hole: $3M_{\odot} \le M < \sim 15 M_{\odot}$
 - high accretion rate: $0.1M = \sec^{-1} \le M_{dot} \le 1 M = \sec^{-1}$
 - photo-disintegration + neutronization r < 70 [GM_{hole}/c²]
 (onset of strong cooling) (Popham, Woosley & Fryer '99)

local v cooling (i.e., negligible advection) (Di Matteo et al '02)

"slim"
$$\alpha$$
-disk: h/r \approx 0.4 (M _{ϕ} ⁻¹= c_s/v _{ϕ}) even for r < r_{ms}

Keplerian rotation rate : $\Omega_{\pm} = (r^{3/2} \pm a)^{-1}$

(numerical GRMHD, Hirose et al 2003)

h: height, r: radius, M $_{\phi}$: azimuthal Mach number a: spin parameter, Ω_{\pm} : angular velocity

Will show:

Hyper-accretion \longrightarrow few large clumps near the marginally bound radius. Optimal for nearly monochromatic GW!

Model involves

- Magneto-rotationally induced disk dynamics
- General relativistic effects on the MRI
- Neutrino stress effects (diffusive pressure support)

Model yields:

- About 2π massive clumps inside $r_{ms} > r > r_{mb}$
- Free-fall from r_{mb} on a timescale $\delta t_{free fall} \sim \Omega^{-1}_{+} (r_{mb})$
- Coherence in arrival times to r_{mb} for large clumps

Resonant Driving of Quasi-Normal Ringing Kerr Modes

MRI + Hyper-accretion: v cooling and relativistic disk dynamics

- v stress: diffusive pressure support
- radiative heat conduction
- non-elastic fluid properties (Araya-Góchez & Vishniac '03)
 "long-lived" mass over-densities (Turner et al '03)
 general relativity: magnetic
 MRI: coriolis shear (+ elastic coupling)
 as r → r_{ph} large-scale modes
 (Araya-Góchez '02)

Kerr Geometry Particle dynamics: Circular Geodesic Radii

• Order of radii: $[GM/c^2 = 1]$

 $D^{-1} = g^{rr}, \text{ inv. prop radial component of background metric} C^{-1} \propto \gamma_g^2, \text{ inv. prop. gravitational red shift squared} X^2 \propto 1 - 3D/4C_{\pm}, \text{"epicycle" frequency, radial oscillations} \frac{r_{ms}}{r_{gh}}: \text{ marginally stable orbit radius} X_{\pm}(r) \rightarrow 0$ $r_{gh}: \text{ photon radius} \qquad C_{\pm}(r) \rightarrow 0$ $r_{+}: \text{ event horizon} \qquad D(r) \rightarrow 0$ $r_{mb}: \text{ min. radius of "cusp" in effective potential}$ $akin \text{ to } L_1 \text{ point in close binaries;} \qquad (Kozlowski et al 1978)$

 $r_{ms} > r_{mb} > r_{ph} > r_{+}$ (for a=0, 6 > 4 > 3 > 2)

Relativistic Wave-numbers of Fastest Growth

Dimensionless, spin dependent wave-number: $q_{\text{B}}\equiv \ k.V_{\text{Alf}}/\Omega \ \ ({}_{\propto}k_{\parallel})$

For Keplerian flow: $q_B^2 \rightarrow 1 - X^4/16$ $\rightarrow 1 - (1\pm a/r^{3/2})^2 \{1-3D/4C_{\pm}\}^4$ $q_B \rightarrow 0^+$ as r_{ph} is approached

QNR modes of Oscillation

- single excitation event
- Head-on collisions: point particle limit M_{clump} » M_{hole}
 - Gravitational Bremsstrahlung (weak field)
 - Quasi-Normal Ringing (strong field) (DRPP '76, Lousto & Price '97)
- Quick estimate: one orbit @ r_{mb}, single clump:
 - $h = |h_{ij}^{TT}| \sim [G/c^2] \delta M/D_L \sim 3_{-25} (\delta M \sim 3.0_{-4} M_{\odot} @ 27 Mpc)$
- QNR modes: Kerr geometry's damped oscillations
 - Bar-like (l,m = 2,2) mode frequency and waveform
 $ω_{22} = 1 .63 (1-a)^{.3} [2π/M_{hole}]$ (Echeverria `89)
 h (t) = H₀/d_L S₂₂(φ,θ,a) exp i(ω₂₂ t φ) e^{- Γ t}

Collective effects

- resonant driving of QNR modes
- Premises
 - Clump formation in relativistic annulus r_{ms} > r > r_{mb}
 - Free-fall from $r \approx r_{mb}$ (from the cusp in effective potential)

 $\delta t_{\text{free fall}} \sim \Omega^{-1}_{+}(r_{\text{mb}})$ drives quadrupole oscillations at twice Ω_{+,mb}:

$$\omega_{dr} = 2\Omega_{+,mb}$$

With natural frequency ω_{QNR} and damping rate Γ_{QNR} :

 $|2\Omega_{mb} - \omega_{QNR}| \le \frac{1}{2}\Gamma_{QNR}$ for a $\ge .95!$

- Waveforms: un-damped sinusoids @ ω_{dr}
 - Saturation amplitude

 $\begin{array}{ll} H_{sat}/H_{0} \propto & \{\omega_{dr}^{2} - \omega_{QNR}^{2} - i \omega_{dr} \Gamma_{QNR} \}^{-1} \\ (at resonance) & \propto & \omega_{QNR}/\Gamma_{QNR} = 2Q \end{array}$

Resonant Driving of QNR Modes

Signal Strength & Energy Deposition

- Total energy deposition ($\Delta T = 2\pi N_{cycles} / \omega_{dr}$)

 $\Delta E_{GW} = [c^2] \epsilon (\delta M)_{geo} \ln (M_{final}/M_{initial})$

•
$$<[S/N]^2 > \int d \ln \omega h^2_{char} / h^2_{noise}$$

With $h \equiv |h_{ij}^{TT}|$ (Flanagan & Huges '98) $h_{char}^{2}(\omega) = 2(1+z)^{2}/\pi^{2}D_{L}^{2} d_{\omega}E[(1+z)\omega]$ $|h_{char}|^{2}_{\omega=\omega_{dr}} \longrightarrow (1+z)^{2}/2\pi^{2} (|H_{sat}| / D_{L})^{2} N^{2}$ $h \longrightarrow [G/2\pi C] (2(1+z)/\pi D_{L})^{2} \epsilon (\delta M)_{geo} \Delta T \ln (M_{final}/M_{initial}))$ (Araya-Góchez '03)

Strain Amplitude Estimates

 $h_{char}^{2} = [G/2\pi c] \epsilon (2(1+z)/\pi D_{L})^{2} (\delta M)_{geo} \Delta T \ln(M_{final}/M_{initial})$

• For GRB030329, plug in z = .1685, D_L = 810 Mpc, M_{initial} = 15 M_{\odot}, a = .98, $\Delta T = 1$ sec, and $(\delta M)_{geo} = M_{dot} \Omega^{-1}_{+} (r_{mb}) = 1.83_{-4} M_{\odot}$ to yield

 $h_{char} = 8.4_{-23}$ @ f = 1490 Hz

• For GRB980425, plug in $D_L = 27$ Mpc, $M_{initial} = 15$ M $_{\odot}$, a = .98, $\Delta T = 1$ sec and $(\delta M)_{geo} = M_{dot} \Omega^{-1}_{+} (r_{mb}) = 1.83_{-4}$ M $_{\odot}$ yields

 $h_{char} = 2.16_{-21} @ f = 1741 Hz$

Nearby Hyper-Novae?

© Y.H. Chu, R. Fesen, D. Matonick, & Q. D. Wang, 1999

Hyper-novae remnants in M101 (7.1 Mpc)? (Y. Chu et al '99)

In Summary

- MHD + GR + v-cooling in hype-accreting black holes may drive QNR modes in resonant fashion for $.99 \ge a \ge .9$
- GW amplitude may reach ≈ 22 times DRPP estimate from a single clump in-fall!, depending on hole spin a
 - Enhanced energy deposition : (H_{sat}/H₀)² = 484 (optimal for energy deposition into gravitational waves)
- Hyper-accreting holes ≠ magnetized torus-hole systems

(van Putten '03)

- MRI vs Papaloizou-Pringle instability
- Hyper-accretion vs suspended accretion ("magnetic wall")
- MHD vs force-free magnetosphere (dissipation?)
- Typical frequencies: 1500 Hz vs 500 Hz

Searching for driven QNR waveforms with LIGO

- Next: template families
 - secular black hole growth
 - going into and out of resonance:
 - Gaussian envelopes for the QNR amplitudes
 - varying M_{initial} (increasing) & M_{dot} (decreasing)
- Future
 - GRB/Hyper-novae are very promising sources of GW
 - Searching for GW from driven hole ringing is very feasible:

clean nearly monochromatic signals with very large amplitudes!