Pulsar kicks and a possible signal from a nearby supernova

- Pulsar kicks and dark matter may have a common explanation
- If so, peculiar signal may be detected LIGO and LISA
[AK, Segrè, Fuller, Pascoli, Mocioiu, Semikoz]

Gravity waves from a supernova

- Supernovae would have made a much better source if the explosions were asymmetric
- Pulsars receive a kick at birth in a supernova. Origin unknown.
- Some explanations of the pulsar kicks predict a strong signal

Pulsar velocities

Pulsars have large velocities, $\langle v\rangle \approx 250-450 \mathrm{~km} / \mathrm{s}$.
[Cordes et al.; Hansen, Phinney; Kulkarni et al.; Lyne et al.]
A significant population with $v>700 \mathrm{~km} / \mathrm{s}$, about 15% have $v>1000 \mathrm{~km} / \mathrm{s}$, up to $1600 \mathrm{~km} / \mathrm{s}$. [Arzoumanian et al.; Thorsett et al.;]
The high-velocity population is so large that some suggested the distribution is two-component, with average velocities $v_{1} \approx 90 \mathrm{~km} / \mathrm{s}$ and $v_{2} \approx 500 \mathrm{~km} / \mathrm{s}$ [Cordes, Chernoff]

Proposed explanations:

- asymmetric collapse [Shklovskii] (small kick)
- evolution of close binaries [Gutt, Gunn, Ostriker] (not enough)
- acceleration by EM radiation [Harrison, Tademaru] (kick small, predicted polarization not observed)
- asymmetry in EW processes that produce neutrinos [Chugai; Dorofeev, Rodinov, Ternov] (asymmetry washed out)
- "cumulative" parity violation [Lai, Qian; Janka] (it's not cumulative)

Asymmetric collapse

"...the most extreme asymmetric collapses do not produce final neutron star velocities above 200km/s" [Fryer '03]

Supernova neutrinos

Nuclear reactions in stars lead to a formation of a heavy iron core. When it reaches $M \approx 1.4 M_{\odot}$, the pressure can no longer support gravity. \Rightarrow collapse.

Energy released:

$$
\Delta E \sim \frac{G_{N} M_{\mathrm{Fe} \text { core }}^{2}}{R} \sim 10^{53} \mathrm{erg}
$$

99% of this energy is emitted in neutrinos

Pulsar kicks from neutrino emission?

Pulsar with $v \sim 500 \mathrm{~km} / \mathrm{s}$ has momentum

$$
M_{\odot} v \sim 10^{41} \mathrm{~g} \mathrm{~cm} / \mathrm{s}
$$

SN energy released: $10^{53} \mathrm{erg} \Rightarrow$ in neutrinos. Thus, the total neutrino momentum is

$$
P_{\nu ; \text { total }} \sim 10^{43} \mathrm{~g} \mathrm{~cm} / \mathrm{s}
$$

a $\mathbf{1 \%}$ asymmetry in the distribution of neutrinos
is sufficient to explain the pulsar kick velocities
But what can cause the asymmetry??

Magnetic field?

Neutron stars have large magnetic fields. A typical pulsar has surface magnetic field $B \sim 10^{12}-10^{13} \mathrm{G}$.
Recent discovery of soft gamma repeaters and their identification as magnetars
\Rightarrow some neutron stars have surface magnetic fields as high as $10^{15}-10^{16} \mathrm{G}$.
\Rightarrow magnetic fields inside can be $10^{15}-10^{16} \mathrm{G}$.
Neutrino magnetic moments are negligible, but the scattering of neutrinos off polarized electrons and nucleons is affected by the magnetic field.

Core collapse supernova

Onset of the collapse: $t=0$

Core collapse supernova

Shock formation and "neutronization burst": $t=1-10 \mathrm{~ms}$

Protoneutron star formed. Neutrinos are trapped. The shock wave breaks up nuclei, and the initial neutrino come out (a few \%).

Core collapse supernova

Thermal cooling: $t=10-15 \mathrm{~s}$

Most of the neutrinos emitted during the cooling stage.

Electroweak processes producing neutrinos (urca),

$$
p+e^{-} \rightleftharpoons n+\nu_{e} \text { and } n+e^{+} \rightleftharpoons p+\bar{\nu}_{e}
$$

have an asymmetry in the production cross section, depending on the spin orientation.

$$
\sigma\left(\uparrow e^{-}, \uparrow \nu\right) \neq \sigma\left(\uparrow e^{-}, \downarrow \nu\right)
$$

The asymmetry:

$$
\tilde{\epsilon}=\frac{g_{V}^{2}-g_{A}^{2}}{g_{V}^{2}+3 g_{A}^{2}} k_{0} \approx 0.4 k_{0}
$$

where k_{0} is the fraction of electrons in the lowest Landau level.

In a strong magnetic field,

k_{0} is the fraction of electrons in the lowest Landau level.
Pulsar kicks from the asymmetric production of neutrinos?
[Chugai; Dorofeev, Rodionov, Ternov]

Can the weak interactions asymmetry cause an anisotropy in the flux of neutrinos due to a large magnetic field?

Neutrinos are trapped at high density.

Can the weak interactions asymmetry cause an anisotropy in the flux of neutrinos due to a large magnetic field?

Abstract

No Rescattering washes out the asymmetry [Vilenkin; AK,Segrè, Vilenkin]. In approximate thermal equilibrium the asymmetries in scattering amplitudes do not lead to an anisotropic emission. Only the outer regions, near neutrinospheres, contribute (a negligible amount).

However, if a weaker-interacting sterile neutrino was produced in these processes, the asymmetry would, indeed, result in a pulsar kick!

Sterile neutrinos leave the star without scattering. Hence, they give the pulsar a kick.

Sterile neutrinos with a small mixing to active neutrinos

$$
\left\{\begin{array}{l}
\left|\nu_{1}\right\rangle=\cos \theta\left|\nu_{e}\right\rangle-\sin \theta\left|\nu_{s}\right\rangle \tag{1}\\
\left|\nu_{2}\right\rangle=\sin \theta\left|\nu_{e}\right\rangle+\cos \theta\left|\nu_{s}\right\rangle
\end{array}\right.
$$

The almost-sterile neutrino, $\left|\nu_{2}\right\rangle$ was never in equilibrium. Production of ν_{2} could take place through oscillations.
The coupling of ν_{2} to weak currents is also suppressed, and $\sigma \propto \sin ^{2} \theta$.
The probability of $\nu_{e} \rightarrow \nu_{s}$ conversion in presence of matter is

$$
\begin{equation*}
\left\langle P_{\mathrm{m}}\right\rangle=\frac{1}{2}\left[1+\left(\frac{\lambda_{\mathrm{osc}}}{2 \lambda_{\mathrm{s}}}\right)^{2}\right]^{-1} \sin ^{2} 2 \theta_{m} \tag{2}
\end{equation*}
$$

where $\lambda_{\text {osc }}$ is the oscillatino length, and λ_{s} is the scattering length.

Sterile neutrinos in cosmology: dark matter

Sterile neutrinos are produced in primordial plasma through oscillations.
The resulting density of relic sterile neutrinos:

$$
\Omega_{\nu_{2}} \sim 0.3\left(\frac{\sin ^{2} 2 \theta}{10^{-8}}\right)\left(\frac{m_{s}}{\mathrm{keV}}\right)^{2}
$$

[Dodelson, Widrow; Dolgov, Hansen; Fuller, Shi; Abazajian, Fuller, Patel]

A sterile neutrino in this range, consistent with dark matter, can also explain the observed velocities of pulsars though $\nu_{e} \rightarrow \nu_{s}$ oscillations in a supernova.

Active-sterile conversions in a neutron star

In matter, there is a potential V_{m} for ν_{e}, but not for ν_{s} :

$$
\begin{aligned}
V\left(\nu_{s}\right) & =0 \\
V\left(\nu_{e}\right) & =-V\left(\bar{\nu}_{e}\right)=V_{0}\left(3 Y_{e}-1+4 Y_{\nu_{e}}\right) \\
V\left(\nu_{\mu, \tau}\right) & =-V\left(\bar{\nu}_{\mu, \tau}\right)=V_{0}\left(Y_{e}-1+2 Y_{\nu_{e}}\right)
\end{aligned}
$$

The difference $V_{m} \equiv V\left(\nu_{e}\right)-V\left(\nu_{s}\right)$

Mixing angle in matter is different from vacuum:

$$
\begin{equation*}
\sin ^{2} 2 \theta_{m}=\frac{\left(\Delta m^{2} / 2 p\right)^{2} \sin ^{2} 2 \theta}{\left(\Delta m^{2} / 2 p\right)^{2} \sin ^{2} 2 \theta+\left(\Delta m^{2} / 2 p \cos 2 \theta-V_{m}\right)^{2}} \tag{3}
\end{equation*}
$$

$$
\begin{align*}
V_{m}=\frac{G_{F} \rho}{\sqrt{2} m_{n}}\left(3 Y_{e}-1+\right. & \left.4 Y_{\nu_{e}}+2 Y_{\nu_{\mu}}+2 Y_{\nu_{\tau}}\right) \tag{4}\\
& \simeq(-0.2 \ldots+0.5) V_{0} \tag{5}
\end{align*}
$$

where $V_{0}=G_{F} \rho / \sqrt{2} m_{n} \simeq 3.8 \mathrm{eV}\left(\rho / 10^{14} \mathrm{gcm}^{-3}\right)$
Mixing is suppressed when $V_{m} \gg\left(\Delta m^{2} / 2 k\right)$.

$$
\left\{\begin{array}{l}
\left|\nu_{1}\right\rangle=\cos \theta_{m}\left|\nu_{e}\right\rangle-\sin \theta_{m}\left|\nu_{s}\right\rangle \tag{6}\\
\left|\nu_{2}\right\rangle=\sin \theta_{m}\left|\nu_{e}\right\rangle+\cos \theta_{m}\left|\nu_{s}\right\rangle
\end{array}\right.
$$

The coupling of ν_{2} to weak currents is also suppressed, and $\sigma \propto \sin ^{2} \theta$. The probability of $\nu_{e} \rightarrow \nu_{s}$ conversion in presence of matter is

$$
\begin{equation*}
\left\langle P_{\mathrm{m}}\right\rangle=\frac{1}{2}\left[1+\left(\frac{\lambda_{\mathrm{osc}}}{2 \lambda_{\mathrm{s}}}\right)^{2}\right]^{-1} \sin ^{2} 2 \theta_{m} \tag{7}
\end{equation*}
$$

where $\lambda_{\text {osc }}$ is the oscillatino length, and λ_{s} is the scattering length.

However, the matter potential can evolve on short time scales.

$$
\begin{align*}
& V_{m}=\frac{G_{F} \rho}{\sqrt{2} m_{n}}\left(3 Y_{e}-1+4 Y_{\nu_{e}}+2 Y_{\nu_{\mu}}+2 Y_{\nu_{\tau}}\right) \tag{8}\\
& V_{m}>0 \Rightarrow \text { Transitions } \nu_{e} \rightarrow \nu_{s} \Rightarrow V_{m} \text { decreases } \\
& V_{m}<0 \Rightarrow \text { Transitions } \bar{\nu}_{e} \rightarrow \nu_{s} \Rightarrow V_{m} \text { increases }
\end{align*}
$$

Therefore,
[Abazajian, Fuller, Patel]

$$
\begin{gathered}
\qquad V_{m} \rightarrow 0 \\
\sin \theta_{m} \rightarrow \sin \theta_{0} \\
\text { production of } \nu_{s} \text { is unsuppressed }
\end{gathered}
$$

Electroweak processes (urca) producing neurtrinos, including sterile neutrinos,

$$
p+e^{-} \rightleftharpoons n+\nu_{e} \text { and } n+e^{+} \rightleftharpoons p+\bar{\nu}_{e}
$$

have asymmetry in the production cross section, depending on the spin orientation. In polarized medium, the asymmetry is of the order $0.4 \times k_{0}$:

The asymmetry in sterile neutrinos is not affected by rescattering. Sterile neutrinos escape

Sterile neutrinos leave the star without scattering. Hence, they give the pulsar a kick.

If the fraction of energy emitted in sterile neutrinos is

$$
\begin{equation*}
r_{\mathcal{E}}=\left(\frac{\mathcal{E}_{\mathrm{s}}}{\mathcal{E}_{\mathrm{tot}}}\right) \sim 0.05-0.7 \tag{9}
\end{equation*}
$$

(as it can easily be), then the resulting momentum asymmetry is

$$
\begin{equation*}
\epsilon \sim 0.02\left(\frac{k_{0}}{0.3}\right)\left(\frac{r_{\varepsilon}}{0.5}\right) \tag{10}
\end{equation*}
$$

which is sufficient to explain the pulsar kick velocities.

Parameter range: need the equilibration of $V_{m} \rightarrow 0$ to occur faster than $\sim 1 \mathrm{~s}$.

$$
\begin{align*}
\tau_{V} \simeq & \frac{V_{m}^{(0)} m_{n}}{\sqrt{2} G_{F} \rho}\left(\int d \Pi \frac{\sigma_{\nu}^{\mathrm{urca}}}{e^{\left(\epsilon_{\nu}-\mu_{\nu}\right) / T}+1}\left\langle\boldsymbol{P}_{m}\left(\nu_{e} \rightarrow \nu_{s}\right)\right\rangle-\right. \\
& \left.\int d \Pi \frac{\sigma_{\bar{\nu}}^{\mathrm{urca}}}{e^{\left(\epsilon_{\bar{\nu}}-\mu_{\bar{\nu}}\right) / T}+1}\left\langle\boldsymbol{P}_{m}\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{s}\right)\right\rangle\right)^{-1} \tag{11}
\end{align*}
$$

where $d \Pi=\left(2 \pi^{2}\right)^{-1} \epsilon_{\nu}^{2} d \epsilon_{\nu}$, and $V_{m}^{(0)}$ is the initial value of the matter potential V_{m}.
[Abazajian, Fuller, Patel]

$$
\begin{aligned}
\tau_{V}^{\text {on-res }} & \simeq \frac{2^{5} \sqrt{2} \pi^{2} m_{n}}{G_{F}^{3} \rho} \frac{\left(V_{m}^{(0)}\right)^{6}}{\left(\Delta m^{2}\right)^{5} \sin 2 \theta}\left(e^{\frac{\Delta m^{2} / 2 V_{m}^{(0)}-\mu}{T}}+1\right) \\
& \sim\left(\frac{2 \times 10^{-9} \mathrm{~S}}{\sin 2 \theta}\right)\left(\frac{10^{14} \frac{g}{c m^{3}}}{\rho}\right)\left(\frac{20 \mathrm{MeV}}{T}\right)^{6}\left(\frac{\Delta m^{2}}{10 \mathrm{keV}^{2}} .\right) \\
\tau_{V}^{\text {off-res }} & \simeq \frac{4 \sqrt{2} \pi^{2} m_{n}}{G_{F}^{3} \rho} \frac{\left(V_{m}^{(0)}\right)^{3}}{\left(\Delta m^{2}\right)^{2} \sin ^{2} 2 \theta} \frac{1}{\mu^{3}} \\
& \sim\left(\frac{6 \times 10^{-9} \mathrm{~S}}{\sin ^{2} 2 \theta}\right)\left(\frac{V_{m}^{(0)}}{0.1 \mathrm{eV}}\right)^{3}\left(\frac{50 \mathrm{MeV}}{\mu}\right)^{3}\left(\frac{10 \mathrm{keV}^{2}}{\Delta m^{2}}\right)^{2}
\end{aligned}
$$

[Fuller, AK, Mocioiu, Pascoli]

Allowed range of parameters (time scales, fraction of total energy emitted):

[Fuller, AK, Mocioiu,Pascoli]

Resonant active-sterile neutrino conversions in matter

Matter potential:

$$
\begin{aligned}
V\left(\nu_{s}\right)= & 0 \\
V\left(\nu_{e}\right)= & -V\left(\bar{\nu}_{e}\right)=V_{0}\left(3 Y_{e}-1+4 Y_{\nu_{e}}\right) \\
V\left(\nu_{\mu, \tau}\right)= & -V\left(\bar{\nu}_{\mu, \tau}\right)=V_{0}\left(Y_{e}-1+2 Y_{\nu_{e}}\right)+c_{L}^{Z} \frac{\vec{k} \cdot \vec{B}}{k} \\
& c_{L}^{Z}=\frac{e G_{F}}{\sqrt{2}}\left(\frac{3 N_{e}}{\pi^{4}}\right)^{1 / 3}
\end{aligned}
$$

Mikheev-Smirnov-Wolfenstein (MSW) effect

The resonance condition is

$$
\begin{equation*}
\frac{m_{i}^{2}}{2 k} \cos 2 \theta_{i j}+V\left(\nu_{i}\right)=\frac{m_{j}^{2}}{2 k} \cos 2 \theta_{i j}+V\left(\nu_{j}\right) \tag{12}
\end{equation*}
$$

The resonance is affected by the magnetic field and occurs at different density depending on $\vec{k} \cdot \vec{B}$, that is depending on direction.

As a result, the active neutrinos convert to sterile neutrinos at different depths on different sides of the start.
Temperature is a function of r. The energy of an escaping sterile neutrino depends on the temperature of at the point it was produced.

The magnetic field shifts the position of the resonance because of the $\frac{\vec{k} \cdot \vec{B}}{k}$ term in the potential:

In the absebce of magnetic field, ν_{s} escape isotropically

The magnetic field shifts the position of the resonance because of the $\frac{\vec{k} \cdot \vec{B}}{k}$ term in the potential:

A crude estimate of the kick

The mean energy of emitted sterile neutrinos is proportional to the temperature at the point of production. The point of resonant conversion depends on direction:

$$
\begin{equation*}
r(\phi)=r_{0}+\delta \cos \phi \tag{13}
\end{equation*}
$$

where $\cos \phi=(\vec{k} \cdot \vec{B}) / k$ and δ is determined by the equation:

$$
\begin{equation*}
2 \frac{d N_{n}(r)}{d r} \delta \approx e\left(\frac{3 N_{e}}{\pi^{4}}\right)^{1 / 3} B \tag{14}
\end{equation*}
$$

This yields

$$
\begin{equation*}
\delta=\left(\frac{3 N_{e}}{\pi^{4}}\right)^{1 / 3} \frac{e}{2} B / \frac{d N_{n}(r)}{d r}=\frac{e \mu_{e}}{2 \pi^{2}} B / \frac{d N_{n}(r)}{d r} \tag{15}
\end{equation*}
$$

where $\mu_{e} \approx\left(3 \pi^{2} N_{e}\right)^{1 / 3}$ is the chemical potential of the degenerate (relativistic) electron gas.
Asymmetry in the outgoing momentum (assuming Stefan-Boltzmann):

$$
\begin{align*}
\frac{\Delta k}{k}=\frac{1}{3} \frac{T^{4}\left(r_{0}-\delta\right)-T^{4}\left(r_{0}+\delta\right)}{T^{4}\left(r_{0}\right)} & \approx \frac{8}{3} \frac{1}{T} \frac{d T}{d r} \delta \tag{16}\\
& \approx \frac{4 e}{3 \pi^{2}}\left(\frac{\mu_{e}}{T} \frac{d T}{d N_{n}}\right) B \tag{17}
\end{align*}
$$

Estimate the derivative $\frac{d T}{d N_{n}}$ using $N_{n}=\frac{2\left(m_{n} T\right)^{3 / 2}}{\sqrt{2} \pi^{2}} \int \frac{\sqrt{z} d z}{e^{\left(z-\mu_{n}\right) / T}+1}$.

Finally,

$$
\begin{equation*}
\frac{\Delta k}{k}=\frac{4 e \sqrt{2}}{\pi^{2}} \frac{\mu_{e} \mu_{n}^{1 / 2}}{m_{n}^{3 / 2} T^{2}} B \tag{18}
\end{equation*}
$$

At the core density $\rho \sim 10^{14} \mathrm{~g} / \mathrm{cm}^{3}$, one gets the asymmetry

$$
\begin{equation*}
\frac{\Delta k}{k}=\frac{4 e \sqrt{2}}{\pi^{2}} \frac{\mu_{e} \mu_{n}^{1 / 2}}{m_{n}^{3 / 2} T^{2}} B \sim 0.01\left(\frac{B}{10^{15} \mathrm{G}}\right) \tag{19}
\end{equation*}
$$

[AK,Segrè]
A more careful calculation gives the same order of magnitude [Barkovich et al., PR D66, 123005 (2002); AK, Segrè, PR D D59 061302 (1999)].

The core density $\rho \sim 10^{14} \mathrm{~g} / \mathrm{cm}^{3}$ determines the

$$
\Delta m^{2} \sim(10 \mathrm{keV})^{2}
$$

Adiabaticity: the oscillation length

$$
\lambda_{\mathrm{osc}} \approx\left(\frac{1}{2 \pi} \frac{\Delta m^{2}}{2 k} \sin 2 \theta\right)^{-1} \sim \frac{1 \mathrm{~mm}}{\sin 2 \theta}
$$

must be smaller than (1) the scale height of density (2) the mean free path of neutrinos. \Rightarrow

$$
\sin ^{2} \theta \gtrsim 10^{-10}
$$

The range of parameters [AK, Segrè; Fuller,AK,Mocioiu,Pascoli]:

Resonant (1) \& off-resonant (2) emissions combined:

the pulsar kick regions overlap with the dark matter region

How "natural" is the mixing $\sin ^{2} \theta \sim 10^{-8}$?
Models of neutrino masses commonly predict:

$$
\sin ^{2} \theta \sim \frac{m_{1}}{m_{2}} \quad[\text { e.g, Kaus and Meshkov }]
$$

for a heavy neutrnio with a $10 \mathrm{keV}=10^{5} \mathrm{eV}$ mass and a light one with a $10^{-3} \mathrm{eV}$ mass, this ratio is about right.

Pulsar kicks: why sterile neutrinos?

Why not ordinary active neutrinos?
To get a pulsar kick out of $\nu_{\mu, \tau} \leftrightarrow \nu_{e}$ oscillations, one would require the resonant neutrino conversion to take place between the electron and τ neutrinospheres, at density $\rho \sim 10^{11}-10^{12} \mathrm{~g} / \mathrm{cm}^{3}$. This density corresponds to

$$
\left(\Delta m^{2}\right)^{1 / 2} \sim 10^{2} \mathrm{eV}
$$

This is inconsistent with experimental/cosmological limits.

Chandra, XMM-Newton can see keV photons.

Virgo cluster image from XMM-Newton

Chandra, XMM-Newton can see photons: $\nu_{s} \rightarrow \nu_{e} \gamma$

Chandra, XMM-Newton can see photons: $\nu_{s} \rightarrow \nu_{e} \gamma$

Chandra, XMM-Newton can see photons: $\nu_{s} \rightarrow \nu_{e} \gamma$

non-zero lepton asymmetry changes the dark matter range [Abazajian, Fuller, Tucker]

Gravity waves

Artist's conception by Roulet [Summer School lectures in Trieste]
Rotating "beam" of neutrinos is the source of GW

Gravity waves

Artist's conception by Roulet [Summer School lectures in Trieste]
Rotating "beam" of neutrinos is the source of GW

Gravity waves at LIGO and LISA

[Loveridge, Phys. Rev. D69 024008 (2004)]

Conclusions

- Sterile neutrinos in the $1-20 \mathrm{keV}$ range can explain the observed pulsar kicks
- The same neutrino could be the dark matter
- Two puzzles from a single new particle
- Minimal extension of the Standard Model that is consistent with cosmology
- Can verify this mechanism through observations of X-rays from nearby clusters, or from gravity waves in the event of a nearby supernova
- A gravity wave signature not expected form a supernova

Resonant (1) \& off-resonant (2) emissions combined:

[AK, Segrè, PL B396, 197 (1997)]
[Fuller,AK,Mocioiu,Pascoli, Phys. Rev. D 68, 103002 (2003)]

