

Laser Interferometer Space Antenna

Fundamental Limit in Frequency Stabilization of Lasers

Kenji Numata [NASA/GSFC]

Amy Kemery, Jordan Camp

Jan. 20, 2005

Sector Stabilization of lasers with rigid cavity

- Widely used in many fields
 - Including LISA
- Stability achieved with rigid cavity
 - Unbeatable and unidentified noise
- Solution (Brownian noise) of rigid cavity
 - We point out this as a fundamental limitation.
 - Rigorous evaluation with experiments and calculations
 - Agreement with world-highest level stabilization results

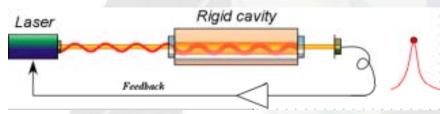
New insights for precision measurement communities

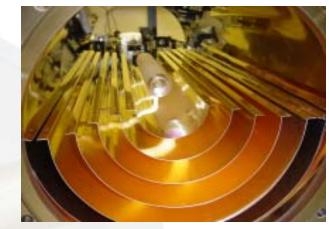
- 1. Frequency stability of laser
 - Why frequency stabilization?
 - Rigid cavity
 - Fluctuation-Dissipation Theorem (FDT)
- 🤏 2. Experiment
 - Experiment to measure Q
- 3. Calculation
 - Numerical approach with Finite Element Method (FEM)
- 🤏 4. Results
 - Comparison with experimental stabilization results
- 🤏 5. Summary

1. Frequency stability of laser

ASPEN Conference 2005

- Why frequency stabilization?
 - Wide range of application
 - Optical frequency standards
 - High-resolution spectroscopies
 - Fundamental physics tests
 - Ex.) Michelson-Morley type experiment: basis of Special/General Relativity
 - Interferometric measurements
 - -Ex.) Gravitational wave detection using laser interferometer: LISA, LIGO...

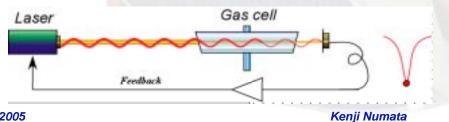

- Used as wavelength reference

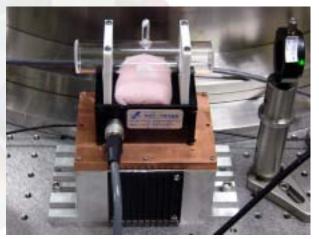

- Laser frequency assumed to be fixed to one frequency
- In reality, it fluctuates! : Needs to be stabilized.
 - LISA requirement: 30Hz/rtHz

Methods of frequency stabilization

ASPEN Conference 2005

- Two major frequency references
 - Rigid cavity (Basic design for LISA)
 - Made of low CTE material
 - Thermal shield to minimize length variation
 - Laser controlled to be stored within the cavity




ULE rigid cavity with thermal shields

- Atomic absorption line (Basic design for TPF)

- Cooling to avoid Doppler broadening
- Use of hyperfine structure
- Laser controlled to be absorbed by one line

lodine cell with cooling system

- Possible noise sources
 - Non-fundamental noise source
 - Length change due to temperature variation
 - Length change due to vibration (seismic noise)
 - Length change due to mirror heating --- coupled to laser intensity noise
 - Coupling from RF amplitude noise
 - Pointing noise coupled to misalignment
 - Circuit noise
 - Etc...
 - Fundamental noise source
 - Thermal noise as a result of statistical physics
 - Hasn't been evaluated from 1970's!!

Fluctuation-Dissipation Theorem

- Solution of thermal noise spectrum G(f)
 - Based on FDT (Fluctuation-Dissipation Theorem)

$$G(f) = -\frac{4k_BT}{\omega} \operatorname{Im}[H(\omega)]$$

H(f): transfer function

- Useful form

W_{diss}

F=F₀cos(*w*t)

$$G(f) = \frac{4k_BT}{\pi^2 f^2} \frac{W_{diss}(f)}{F^2}$$

W_{diss}: dissipated energy under cyclic force

- F: force amplitude
- ε: strain energy under cyclic force

$$W_{diss}(f) = \int \varepsilon(\vec{r}) dV / Q$$

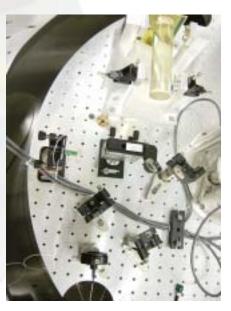
Stored strain energy Calculation Quality factor

Experiment

Loss

Kenji Numata

~



Basic information in estimating thermal noise level

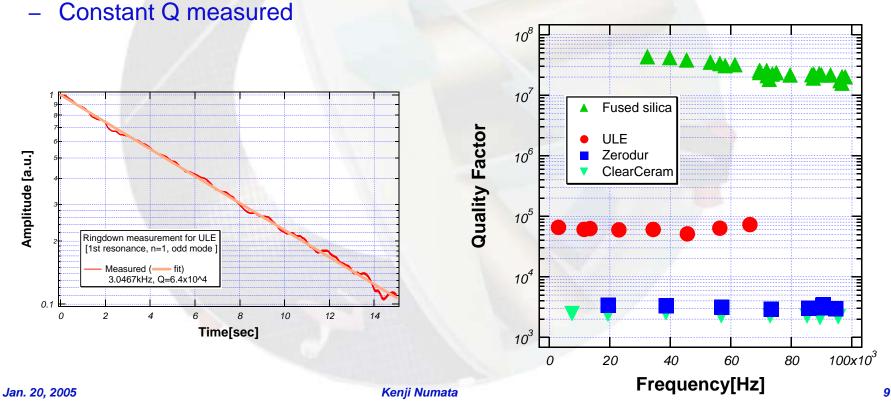
Mechanical quality factor (Q)

- Measured by "ring-down" method
 - Vibration decay measured by Michelson interferometer
 - Sample supported by thin wires in vacuum to reduce external loss
- Samples
 - Low CTE materials
 - Imitating rigid cavity

Measurement system

Jan. 20, 2005

Kenji Numata

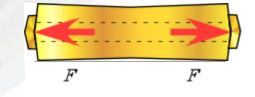


Experimental result

ASPEN Conference 2005

- Sairly low quality factor measured
 - ULE : Q~61000, Zerodure: Q~3100, etc.
 - Usually high Q materials used when thermal noise matters
 - Ex. Ground based gravitational-wave detector: mirror made of silica: Q>107

- Selection of dissipated energy
 - Calculation of strain energy under cyclic force
 - Done by solving Equation Of Motion (EQM) of the system
 - Numerical approach adopted
 - Finite Element Method (FEM)
 - Procedure
 - 1) Prepare rigid cavity mechanical model
 - 2) Apply cyclic force to the observing (beam-illuminating) points
 - 3) Calculate strain energy within the system based on EQM


$$W_{diss}(f) = \int \mathcal{E}(\vec{r}) dV / Q$$

Stored strain energy

Calculation

Quality factor

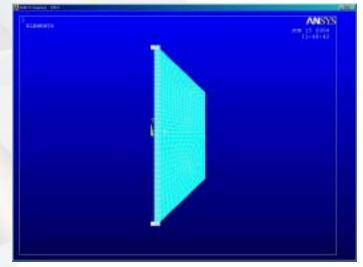
Experiment

Jan. 20, 2005

Correlated Thermal Noise

- Calculation of correlated thermal noise Individual calculation but with correlation term $X = x_{-x}$ • $G_{x}=G_{11}+G_{12}-2G_{12}$ Apply two forces simultaneously to measured points (areas) H11 ſı These two give us equivalent results • H12 Solving equation of motion • X2 Numerical approach adopted rmal noise of fixed cavity Measured between two mi FEM to get W_{diss} nt Noise [m/rtHz] Aeasured on single mirro ٠ LE, 6inch length, 1.5inch dia (Assumed O=1000 constant) Can be applied for any: ٠ Frequency, shape, loss distribution/frequency dependence, weighing... Displacen (This method itself should be published somewhere.) In the following 10 10 Frequency[Hz] Thermal noise in rigid cavity solved •
 - Problem includes:
 - Finite sized mass, material combination (loss distribution), Gaussian beam, coating loss, correlated (generalized coordinate) etc...

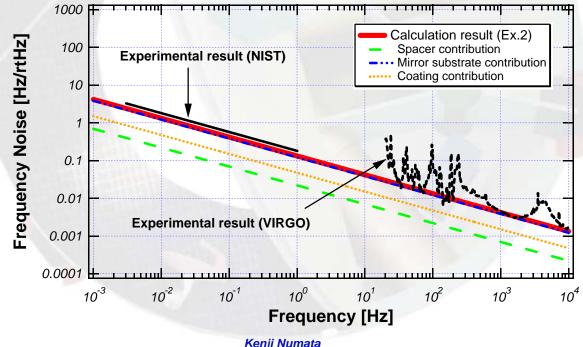
Kenji Numata


Source Stability achieved by NIST/VIRGO

- Calculation assumptions
 - Spacer
 - Material: ULE (Q=60000)
 - Length: 15cm (tapered), diameter: 24cm
 - Mirror (optical contacted)
 - Material: ULE
 - Diameter: 1inch, thickness: 5mm
 - Beam radius: 240um on both mirrors
 - Coating
 - Thickness: 2um, phi(1/Q)=4x10⁻⁴

- FEM model

- ANSYS
- Semi-3D model (2-D axisymmetric)


Half of the cross section model of the cavity

Kenji Numata

- Agreed pretty well with the measurement
 - ~1Hz/rtHz@0.01Hz level (563nm wavelength)
 - We cannot neglect thermal noise (Brownian motion) anymore!
 - Use of low loss mirrors, larger beam diameter, cooling etc
 - Expected to renew world highest frequency stability

Kenji Numata

- Sequency stabilization of laser
 - Wide-range of demands and applications in physics and engineering
 - Use of rigid cavity
 - Basic design for LISA
 - Any length fluctuation of cavity limits frequency stability

Sundamental limit in frequency stabilization with rigid cavity

- Thermal noise as a result of statistical physics
 - We evaluated the noise level with the FDT.
 - Experiment: Q measurement of cavity materials
 - Calculation: Numerical analysis of strain energy
 - Importance of thermal noise pointed out
 - Agreement with world-highest level stabilization results
 - See PRL 93 (2004) 250602 for details.