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AbstractAbstract

Frequency stabilization of lasers with rigid cavity

– Widely used in many fields
• Including LISA

– Stability achieved with rigid cavity
• Unbeatable and unidentified noise

Thermal fluctuation (Brownian noise) of rigid cavity

– We point out this as a fundamental limitation.
• Rigorous evaluation with experiments and calculations

• Agreement with world-highest level stabilization results

New insights for precision measurement communities
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1. Frequency stability of laser1. Frequency stability of laser

Why frequency stabilization?

– Wide range of application
• Optical frequency standards

• High-resolution spectroscopies

• Fundamental physics tests

– Ex.) Michelson-Morley type experiment: basis of Special/General Relativity

• Interferometric measurements

– -Ex.) Gravitational wave detection using laser interferometer: LISA, LIGO…

– Used as wavelength reference
• Laser frequency assumed to be fixed to one frequency

• In reality, it fluctuates! : Needs to be stabilized.

– LISA requirement: 30Hz/rtHz
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Methods of frequency stabilizationMethods of frequency stabilization

Two major frequency references

– Rigid cavity (Basic design for LISA)
• Made of low CTE material

• Thermal shield to minimize length variation

• Laser controlled to be stored within the cavity

– Atomic absorption line (Basic design for TPF)
• Cooling to avoid Doppler broadening

• Use of hyperfine structure

• Laser controlled to be absorbed by one line

ULE rigid cavity with thermal shields

Iodine cell with cooling system
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Stability of rigid cavityStability of rigid cavity

Possible noise sources

– Non-fundamental noise source
• Length change due to temperature variation

• Length change due to vibration (seismic noise)

• Length change due to mirror heating --- coupled to laser intensity noise

• Coupling from RF amplitude noise

• Pointing noise coupled to misalignment

• Circuit noise

• Etc…

– Fundamental noise source

• Thermal noise as a result of statistical physics
– Hasn’t been evaluated from 1970’s!!
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FluctuationFluctuation--Dissipation Theorem Dissipation Theorem 

Calculation of thermal noise spectrum G(f)

– Based on FDT (Fluctuation-Dissipation Theorem)

– Useful form
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Stored strain energy Quality factor

Calculation Experiment
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2. Experiment2. Experiment

Basic information in estimating thermal noise level

– Mechanical quality factor (Q)
• Measured by “ring-down” method

– Vibration decay measured by Michelson interferometer

– Sample supported by thin wires in vacuum to reduce external loss

– Samples
• Low CTE materials

• Imitating rigid cavity

ULE sample

Measurement system

LIGO-G050042-00-Z
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Experimental resultExperimental result

Fairly low quality factor measured

– ULE : Q~61000, Zerodure: Q~3100, etc.
• Usually high Q materials used when thermal noise matters

– Ex. Ground based gravitational-wave detector: mirror made of silica: Q>107

– Constant Q measured

0.1

2

3

4

5

6

7

8

9
1

A
m

pl
itu

de
 [a

.u
.]

14121086420

Time[sec]

Ringdown measurement for ULE
 [1st resonance, n=1, odd mode ]
 

 Measured (  fit)
          3.0467kHz, Q=6.4x10^4

103

104

105

106

107

108

Q
ua

lit
y 

Fa
ct

or

100x103806040200

Frequency[Hz]

 Fused silica
 

 ULE
 Zerodur
 ClearCeram

LIGO-G050042-00-Z



10

ASPEN Conference 2005

Kenji NumataJan. 20, 2005

3. Calculation3. Calculation

Calculation of dissipated energy

– Calculation of strain energy under cyclic force
• Done by solving Equation Of Motion (EQM) of the system

– Numerical approach adopted
• Finite Element Method (FEM)

• Procedure

– 1) Prepare rigid cavity mechanical model

– 2) Apply cyclic force to the observing (beam-illuminating) points

– 3) Calculate strain energy within the system based on EQM

QdVrfWdiss /)()( ∫=
rε

Stored strain energy Quality factor

Calculation Experiment
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Correlated Thermal NoiseCorrelated Thermal Noise

Calculation of correlated thermal noise

– Individual calculation but with correlation term 
• GX=G11+G12-2G12　

– Apply two forces simultaneously to measured points (areas)
• These two give us equivalent results

Solving equation of motion

– Numerical approach adopted
• FEM to get Wdiss

• Can be applied for any:

– Frequency, shape, loss distribution/frequency dependence, weighing…

– (This method itself should be published somewhere.)

– In the following
• Thermal noise in rigid cavity solved

• Problem includes:

– Finite sized mass, material combination (loss distribution), Gaussian beam, coating loss, 
correlated (generalized coordinate) etc…
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4. Result4. Result

World highest stability achieved by NIST/VIRGO

– Calculation assumptions
• Spacer

– Material: ULE (Q=60000)

– Length: 15cm (tapered), diameter: 24cm

• Mirror (optical contacted)

– Material: ULE

– Diameter: 1inch, thickness: 5mm

– Beam radius: 240um on both mirrors

• Coating

– Thickness: 2um, phi(1/Q)=4x10-4

– FEM model
• ANSYS

• Semi-3D model (2-D axisymmetric)

Half of the cross section model of the cavity

LIGO-G050042-00-Z
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Comparison with experimentComparison with experiment

Agreed pretty well with the measurement

– ~1Hz/rtHz@0.01Hz level　(563nm wavelength)

• We cannot neglect thermal noise (Brownian motion) anymore!

• Use of low loss mirrors, larger beam diameter, cooling etc

– Expected to renew world highest frequency stability
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6.Summary6.Summary

Frequency stabilization of laser

– Wide-range of demands and applications in physics and engineering
• Use of rigid cavity

– Basic design for LISA

– Any length fluctuation of cavity limits frequency stability

Fundamental limit in frequency stabilization with rigid cavity

– Thermal noise as a result of statistical physics
• We evaluated the noise level with the FDT.

– Experiment: Q measurement of cavity materials

– Calculation: Numerical analysis of strain energy

• Importance of thermal noise pointed out

– Agreement with world-highest level stabilization results

– See PRL 93 (2004) 250602 for details.
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