

e2e introduction Hiro Yamamoto / Caltech

e2e basic

 what is e2e
 how was, can be, will be, used

 mode matching - a poor mans's view

 CR vs SB
 Upper vs lower SB

 Application

 OMC effect

Tools

Tool	Pros	Cons
Analytic calculation	Underlying mechanism can be easily understood	Only simplified case can be analyzed
FFT/ Melody	Details of optics can be included (Phase map, Thermal lens)	Only static (for now)FFT:not intuitive
e2e	 Non-stationary process Realistic sensing and controls can be included 	 Limited spatial profile No details of optics

Modal Model, not so bad

- » Modal Model can be used to study degenerate and/or unstable cavity
- » Valid only when perturbation is small
- » Field source mode is more important than cavity eigenstates

G050061-E

LIGO End to End simulation overview

- □ Time domain simulation written in C++
- Like MATLAB with Interferometer toolbox
- Major physics components and tools relevant for LIGO
 - » fields & optics, mechanics, digital and analog electronics, measured noise, state space model using ABCD matrix, etc
- □ Flexible to apply for wide varieties of systems
 - » from a simple pendulum to full LIGO I to adv.LIGO
 - » from fast prototyping of subsystems to entire interferometer simulation
- Easy development and maintenance
 - » use of graphical front end for e2e programming
 - » object orient design for easy addition of new physics

e2e example Fabry-Perot cavity dynamics

G050061-E

LIGO e2e usage

LIGO I

- » Lock acquisition design, original and improvements
- » Robust alignment control design
- » Effect of thermal lensing
- » Cross check with other calculation
 - ASC matrix miscalculation found
 - LIGO I 4k Schnupp asymmetry mis-design found
- » Detailed study of input beam (mode cleaner and mode matching telescope)
- Adv.LIGO
 - » Lock acquisition
 - » Radiation pressure and alignment control

Sensitivity curve

G05(

Mode matching based on simple lens/mirror

LIGO

Mode matching with BS

3 IFOs based on pure lens calculation

power in mW

	without BS curvature P(ITMx) / P(ITMy)	with BS curvature P(ITMx) / P(ITMy)
LHO2k	67 / 73	57 / 110
LHO4k	54 / 64	52 / 82
LLO4k	59 / 62	55 / 83

G050061-E

Effects of mode matching in PRM

- Carrier field is insensitive to thermal state of ITMs and BS
- Michelson cavity can induce imbalance of upper and lower sidebands
- □ Mismatch on ITMx (ITMy) enhances upper (lower) SB

Reflection by arm cavity with curvature mismatch

G050061-E

Sideband imbalance in curvature mismatched FPs

G050061-E

modes in the dark port - back on the envelope -

G050061-E

modes in the dark port - e2e simulation -

G050061-E

OMC and ASQ and ASI (1) nominal matching

G050061-E

OMC and ASQ and ASI (2) better matching

AS1

2.5

I demod

AS1

20

20

Q demod

10

differential heating $\alpha \sim 0$ use dark port signal to lock

Symmetric arm common heating α~0.01 dark port signal

G050061-E

Effect on length DOF

G050061-E