

GEO 600 detector status report (S4)

K.A. Strain for the GEO 600 team

LSC Meeting LLO, March 2005 LIGO-G050094-00-Z

GEO600 optical layout (S4)

Site (S4)

Container-city grows

Progress (post S3 to preS4)

- Improvements to michelson and signal recycling loops
 - less noise at low frequency through gain redistribution etc.
 - general reduction of RFI by improved signal handling
- Substantial reduction of collimated-backscatter from several optics
 - most importantly those handling the "arm pick-off" beam used to obtain SR control signals (components repositioned or removed)
 - now normally no scattering problem
- Modest increase in injected and circulating power (using almost half of the power from the 12W laser now)
 - 1 kHz performance limited by mixture of shot and dark noise

Progress (S3 to S4)

- Noise projection work
 - all major linear contributions now tracked (control noise, amplitude noise, oscillator phase noise ...)
 - some of the couplings tracked continuously to allow investigation of potential vetos

Calibration

- full on-line calibration of the two instrumental output quadratures ("HP", "HQ")
 - remember detuned SR gives nearly SSB at response peak so nearly equal signal in P,Q. "HP" has more information <1 KHz, HQ > 1kHz
- combination of HP and HQ signals to get h(t)
- optimal signal recovery, some SNR increase

Progress (S3 to S4)

- Computer / data exchange infrastructure
 - additional supervisory control computers
 - general upgrade of supervisory control computers to increase reliability, now very few problems
 - extension of on-site storage and various minor enhancements and upgrades of data handling computer infrastructure
 - rapid generation and publication of calibrated frames
 - many on-line monitors provided
 - summary reports generated

Sensitivity – Pre S4 example

line:

150 Hz

200 Hz

250 Hz

pump

820 Hz

32 violin

modes

+harmonics

4kHz RFI

peak

Continuous calibration

- continuous injection of calibration lines
- fitting of parameters (optical gain) to measured line amplitudes
- sophisticated control model used to aid good fit
- inverse filters calculated and applied to error point signals to produce HP and HQ
- random error due to parameter miss-estimation is kept small
- main uncertainty is systematic (overall gain) due to difficulty of establishing electrostatic drive response
- long term plan to use separate calibration "actuator"
- on-line calibration and good reliability allowed unattended frequent overnight runs

On-line optical TF measurements

Combining HP and HQ - example result

- Resulting HQ'
 contains almost
 no signal
 compared to HP'
 -> h(t)
- Noise cancels in some frequency regions, is uncorrelated in others

- Pre S4: one fault developed <24 hours before S4 fixed just in time
- Early S4: intermittent fault in suspended EO modulator
 - reduced data quality for some times (part of some nights) about 10 bad periods of a few hours
 - problem identified and fixed
 - may (dis)qualify affected data where appropriate
- duty cycle
 - many long lock stretches (up to >10⁵s)
 - over 35 100% 8-hour shifts so far
 - only 2 shifts < 90%
- two shifts (16hr /day) with experts on call (automated SMS calling 24/7)

Some next steps

- Post S4 checks and calibrations
 - actuator calibration
 - checking vetos arising from noise projection work
- Review of S4 after ~1 month
- Exchange of T~1% MPR for one with T~1000 ppm
 - some changes to the control systems
 - will make acquisition more complex
 - increased thermal effect in BS may increase contrast defect, but we have modulation index capability to spare
 - currently contrast defect is ~10⁻⁶
 - probably do not require OMC
- Noise reduction and tuning to lower frequency to improve overlap with L1/H1/H2