Coating Program Status Report

Gregory Harry LIGO/MIT - On behalf of Coating Working Group -

> March 22, 2005 Technical Plenary Session LSC Meeting – LLO LIGO-G050114-00-R

Outline

- Review of coating problems
- Review of methods

LIGO

- Summary of previous results
- New results
 Doped tantala
 Single layers of materials
- Work in progress
- Plans for future research
- Introduction to non-periodic coating

Problems

Thermal Noise

 Initial LIGO coating too lossy

LIGO

- Loss angle $\phi = 2.7 \ 10^{-4}$
- Limits sensitivity to ~160 Mpc for BNS
- Reduce mechanical loss
 - Goal $\phi = 5 \ 10^{-5}$
 - ~200 Mpc BNS range
- Need to preserve optical, thermal, other mechanical properties

Thermal Compensation

- Absorption in coating dominant source of heating
- Need to reduce absorption
 - Average homogeneous < 0.5 ppm
 - Inhomogeneous

Methods

Thermal Noise

- Ringdown Q's
 - Thin and thick samples
 - Get before and after Q's
- Modeling

LIGO

- Get modal energy in coating
- Calculate coating ϕ
- Glasgow, MIT, HWS

Optical Absorption

- Photothermal Common-Path Interferometry
 - Can measure sub-ppm absorption
 - Spatial resolution sub-mm
- Stanford, LMA/Virgo

Summary of Current Status

Thermal Noise

- Silica/tantala coating
 - Loss from internal friction
 - Tantala has dominant loss
 - Minor differences between vendors
- Other materials

LIGO

- Niobia similar to tantala
- Alumina similar to silica
- Doping tantala with titania reduce mechanical loss
 - Low concentrations
- Direct measurement
 - TNI
- Theory of coating noise
 - Brownian and thermoelastic
 - Need Young's modulus

Other Properties

- Titania doping allows for at least 1 ppm absorption
- Titania doping leaves index of refraction and Young's modulus unchanged

New Results

Formula 3

- Formula 3 SiO_2/Ta_2O_5 doped high [TiO₂]
- LMA/Virgo small coater

Mechanical loss

$$\phi = (1.3 + - 0.1) \times 10^{-4} + (4.7 + - 3.3) \times 10^{-10} \text{ f}$$

Optical absorption

Thin Sample

Frequency	φ
2722 Hz	1.5 10-4
4115 Hz	1.4 10-4
6197 Hz	1.5 10-4
8517 Hz	1.9 10-4
9519 Hz	1.8 10-4

Thick Sample

Frequency	φ
20221 Hz	1.5 10-4
28457 Hz	1.3 10-4
47402 Hz	1.9 10-4
73521 Hz	1.4 10-4

New Results

Formula 4

- Formula 4 SiO_2/Ta_2O_5 doped high [TiO₂]
- LMA/Virgo large coater

Mechanical loss

$$\phi = (1.7 + - 0.1) \ge 10^{-4} + (1.4 + - 0.5) \ge 10^{-9} \text{ f}$$

Optical absorption

Thin Sample

Frequency	φ
2723 Hz	1.3 10-4
2724 Hz	1.5 10-4
4115Hz	2.2 10-4
6200 Hz	1.7 10-4
9524 Hz	2.1 10-4

Thick Sample

Frequency	φ
20221 Hz	2.1 10-4
28457 Hz	2.5 10-4
47402 Hz	5.0 10 ⁻⁴ *
73521 Hz	2.6 10-4

*excluded from fit

New Results Formula 5

- Formula 5 SiO_2/Ta_2O_5 doped medium [TiO₂]
- LMA/Virgo large coater
- Thick sample only

Mechanical loss

 $\phi = (1.6 + - 0.2) \times 10^{-4} + (4.1 + - 5.1) \times 10^{-9} \text{ f}$

Doping of Ta₂O₅ with TiO₂

Loss Angle of SiO $_2$ /TiO $_2$ doped Ta $_2O_5$ at 100 Hz

• Clear improvement with addition of titania

LIGO

- Problem with the large coater?
- Optimum level of doping?
- Run to run variations?

LIGO

New Results Single Layers

- LMA/Virgo small coater
- Thick samples only
- Few nm between 15 layers of tantala

Multilayer measurements

Silica $\phi = (0.5 + / - 0.3) \times 10^{-4}$

Tantala
$$\phi = (4.4 + / - 0.2) \times 10^{-4}$$

Form.
$$2 \phi = (2.4 + / - 0.2) \times 10^{-4}$$

Silica - 2.7 µm T

Ψ -	' / -	1.1)	-

´ Tantala –

Tantala – 1.9 µm Dop

Frequency	ф
20235 Hz	0.0 10-4
28473 Hz	-0.2 10-4
47441 Hz	-1.4 10-4
73559 Hz	-1.0 10-4

Frequency	φ	
20235 Hz	6.7 10 ⁻⁴	
28473 Hz	4.2 10-4	
47441 Hz	11.4 10-4	
73559 Hz	11.1 10-4	

Frequency	φ
20235 Hz	1.7 10-4
28473 Hz	3.1 10-4
47441 Hz	3.8 10-4
73559 Hz	2.9 10-4

Mechanical loss

Silica

 $\phi = (0.3 + /-0.6) \times 10^{-4} + (-2.1 + /-1.3) \times 10^{-9} f$ Tantala (some cracks seen)

 $\phi = (7.0 + / - 2.1) \times 10^{-4} + (6.7 + / - 4.4) \times 10^{-9} \text{ f}$

Doped Tantala, Formula 2

 $\phi = (2.2 + /-1.1) \ge 10^{-4} + (1.6 + /-2.3) \ge 10^{-9} \text{ f}$

In Progress

CSIRO

• Poor stoichiometry

LIGO

- Reduced oxygen flow into chamber
- Preliminary result $\phi \sim 6 \ 10^{-4}$
- Not annealed
- Xenon ions rather than Argon
 - Preliminary result $\phi \sim 4 \ 10^{-4}$
 - Argon result $\phi \sim 3 \ 10^{-4}$
 - Absorption about 1 ppm

LMA/Virgo

- SiO_2/Ta_2O_5 on sapphire
 - Having difficulty with suspension
 - All SiO_2/Ta_2O_5 -Ti O_2 coatings
- TNI optics with SiO_2/Ta_2O_5 doped with TiO_2 Formula 2
 - Direct confirmation of thermal noise

Analysis

- Comparison of optical absorption data with mechanical loss
 - All data is in hand

Future Plans

Thermal Noise

- New dopants in Ta_2O_5
 - Cobalt ?

LIGO

- Lutetium
 - Ta_2O_5 is oxygen deficient
 - Lutetium is same size
 - Lutetium can oxidize Ta₂O₅
- SiO₂/Ta₂O₅ annealed to reduce stress to zero
 - Annealing cycle has been found
 - May expand to further anneals
- Annealing in ozone
- Much higher [TiO₂] in Ta₂O₅

Other Issues

- Consider handling and cleaning procedures
 - Preserve quality of coatings until they are installed
- Coating with absorption as function of radius in AR
 - Compensate for thermal lensing
- High power test of scatter
 - Seeing problems with scatter in initial LIGO
- Continuing work on Mexicanhat mirrors

Non-periodic Coatings

LIGO

- Preliminary work by R. Desalvo with University of Sannio/Salerno using genetic algorithm promising
- Evolve coatings to preserve reflectivity but reduce thickness of Ta₂O₅ needed
- May be able to reduce thickness of higher loss material by ~ 50%
- Concerns about number of layers necessary
- Concerns about required thickness precision
- Concerns with optical absorption
- See following talk by R. Desalvo

Potential Sensitivity with Non-periodic Coatings

__21

Assume 50%
 reduction in Ta₂O₅
 thickness

LIGO

• Equivalent to coating $\phi = 8.5 \ 10^{-5}$

	10 -	Tota	al Noise			
01	10 -22		Suspension T	hermalN	loise	
Hz ^{1/2}		$\mathbf{\mathbf{\hat{v}}}$	Optical Noi	se		
/ (J) /	10 -23		H.		Coating	Thermal
	10 ⁻²⁴	- - -			NOISE	
zed						
3	10 ⁻²⁵	<u>Slica</u> T	<u>hermal \</u>			
)C	10	¹ Noise	^{10 ²} Freque	ncy (Hz)	10 ³	
C		Poter	ntial sensitivi	ty with t	hickness	
)		IUUI	optimize	ed coatin	lgs	
7			T		0	

Source	$\lambda/4$ - $\lambda/4$	Optimized	
	Coating	Coating	
BNS	185 Mpc	210 Mpc	
BBH	820 Mpc	930 Mpc	
Stochastic	2.3 10 ⁻⁹	2.0 10 ⁻⁹	
Crab Pulsar	6.9 10 ⁻⁷	5.9 10 ⁻⁷	