Seismic Isolation for BSC optics from SUS+SEI - update

Norna A Robertson (Stanford University and University of Glasgow) for the Advanced LIGO suspensions (SUS) team

LSC meeting, LLO, March 22nd 2005

G050117-00-R

SUS: Quadruple Suspension for ETM/ITM

- Parameters for suspension
 - Test and penultimate masses : each 40 kg, 34 cm (diam) x 20 cm, silica
 - Other masses: 22 kg, 22 kg
 - Final stage: 60 cm silica ribbons, 1.1 mm x 0.11 mm, Vertical bounce mode: 8.8 Hz first violin mode: ~490 Hz
 - Overall length (suspension point to optic centre) 1.63 m
- MATLAB model used to compute transfer functions (update from M Barton not yet implemented longitudinal TF will be unaffected, vertical TF will be slightly (<10%) larger than shown overleaf)
- SUS requirements taken from
 SUS DRD document T010007-02

Longitudinal and Vertical Transfer Functions

Total noise = 2×10^{-13} m/ $\sqrt{\text{Hz}} \times \sqrt{[\text{long}^2 + (0.001 \times \text{vert})^2)]}$

Total noise = 5 x 10⁻²⁰ m /√Hz @ 10 Hz

c.f. requirement: 1 x 10⁻¹⁹ m/ \sqrt{Hz} for combined long + vert

SEI displacement requirement

Reference : Seismic Isolation Subsystem DRD (E990303-03-D)

Figure 2: SEI optics platform displacement requirement, applicable to all three translational degreesof-freedom.

Seismic noise at test mass (combining SEI+SUS)

Curve produced by multiplying SEI curve by $\sqrt{[longTF^2+(0.001 \text{ x vertTF})^2)]}$ where longTF and vertTF are the suspension transfer functions.

Other degrees of freedom?

- Pitch and yaw requirements: 1×10^{-17} rad/ $\sqrt{\text{Hz}}$ @ 10 Hz
 - Pitch TF at 10 Hz ~ 4 x 10⁻⁸, Yaw TF at 10 Hz ~ 7 x 10⁻⁷
- To meet yaw requirement require residual yaw on seismic platform to be 1.4 x 10⁻¹¹ rad/ \sqrt{Hz}
- c.f. residual displacement noise of 2 x 10^{-13} m/ \sqrt{Hz} over length scale of platform of ~ 1 m, giving ~2 x 10^{-13} rad/ \sqrt{Hz}
- Conclusion factor of ~ 70 in hand
- Transverse requirement: 10^{-17} m/ \sqrt{Hz} (assuming 0.001 coupling into longitudinal)
 - Transverse TF ~ 4 $\times 10^{-7}$
 - Multiply by seismic platform target noise of 2 x 10⁻¹³ m/ \sqrt{Hz} @ 10 Hz giving 8 x 10⁻²⁰ m/ \sqrt{Hz}
- Conclusion factor of ~ 100 in hand

Beamsplitter

- Reference: Design of Beamsplitter Suspension for Advanced LIGO (T040027-00-R)
- Triple pendulum with silica fibres in final stage
- Requirement long. plus vert. noise (all sources) = $2x10^{-17}$ m/ \sqrt{Hz} @ 10 Hz
- Estimated noise
 - Seismic contribution: 4.6 x 10^{-18} m/ \sqrt{Hz} (assuming SEI noise as in SEI DRD), dominated by vertical contribution
 - Suspension thermal noise contribution: 2 x 10^{-18} m/ \sqrt{Hz}
 - Total (adding in quadrature) = 5 x 10⁻¹⁸ m/ $\sqrt{12}$ Hz @ 10 Hz
- Conclusion factor of ~ 4 in hand

(Design is preliminary - could reconsider suspension blade design to improve vertical isolation if necessary)

Finally - HAM Chambers

- Some input into any future re-evaluation of HAM requirements. Consider noise at modecleaner mirror (long. plus vert.)
 - Seismic noise 2.5 x 10⁻¹⁸ m/rt Hz @ 10 Hz (assuming current SEI DRD noise level)
 - Suspension thermal noise also approx. this level. (ref. conceptual design T 010103-03-D)
- c.f. Requirement: long + vert from all sources: $3\sqrt{2} \times 10^{-17}$ m/ $\sqrt{4}$ Hz @ 10 Hz
- Conclusion: there is scope for re-evaluation of SEI requirements for HAM chamber.

