

Detector Characterization Needs

Keith Riles (University of Michigan)
Daniel Sigg (LIGO-LHO)

LIGO Scientific Collaboration Meeting
LIGO Livingston Observatory
March 20-23, 2005

The Next Year

Likely to start S5 run sometime before the end of 2005

- 24/7 operations for 6 months? 1 year?
- Will want the analysis to keep up
- Timely detector studies & data quality flagging will be challenging

Fred's AstroWatch proposal (next talk) requires comparable level of effort between now and S5

So what support do we need in detector characterization?

Detector Characterization Needs - Categories

Real time (~1 minute latency):

- New or improved DMT background monitors for figures of merit and alarms
- New or improved interactive tools for investigations
- More scientists at the observatories

Online astrophysical analysis (~1 hour latency):

- Good calibration information (in good shape already)
- First-order data quality information (much work needed in automation)

Offline analysis (~week to ~month latency):

- Refined data quality information (requires human vetting)
- Intensive or long-integration detector studies

New or improved background DMT monitors we'd like to have:

- Specific glitch finders: (thanks to Fred for many suggestions)
- -- Optical lever lasers (*)
- -- Dewar creaks (*)
- -- Airplanes (*)
- -- DAC's
- -- ADC saturation (*)
- -- Photodiode saturation (*)
- -- Dust

- -- Coil saturation
- -- Gimpy cable
- -- Tank firings
- -- Well explosions
- -- Oil pipeline turbulence
- -- Excitation channel goofups (*)
- -- Things we don't yet know about (!)
- (*) Some work ongoing but not yet ready/complete or some uncertainty in delivery time

Patrick Brady: "How could we embarrass ourselves in the future?"

One answer: By not vetoing problems we already know about or problems we should have known about

New or improved background DMT monitors (cont):

- Servo control artifacts:
 Unity gain frequency too high (or too low!) induced oscillations
- Migration of offline analyses to online DMT (e.g., KleineWelle!)
- Integration of known offline data quality trigger thresholds into alarms
 Should be straightforward, but shouldn't fall through a crack
- Taking over orphaned SpectrumArchiver monitor
 - -- Almost useful now, but spectral choices need attention
 - -- DTT retrieval of spectra is too cumbersome
- Maintaining existing monitors <u>between</u> data runs Complete documentation

New since the S3 run

Sampling of S4 figures of merit on control room walls (this morning)

LHO FOM1 LHO FOM2 LLO FOM3

Challenge:

Can you make a figure of merit good enough to replace one of these FOM's?

(or useful enough to convince Fred and Mike to buy another projector)

6

It's not trivial to meet that challenge:

- DMT infrastructure is easy to plug into lots of bells/whistles to exploit (if DMT already installed, that is)
- BUT writing code is small part of required effort
 - Must validate code to run online 24/7 (e.g., no memory leaks)
 - Must tune configuration parameters to give useful results
 - Must keep parameters tuned as interferometers improve
 - Must document both code and usage
 - Must be attentive to online monitor output and respond to bug reports

New or improved interactive tools for investigations

- Spectrograms / Rayleighgrams (RayleighMonitor P. Sutton)
 (Works well in scroll / real-time mode need easier pointing to recorded data)
- Bilinear noise measure (BicoViewer S. Penn)
 (Ditto)
- Matlab tools for quick studies (again, easier pointing to data is key)

Need more scientists at the observatories carrying out investigations

Why do investigations at Hanford or Livingston?

- Easy access to all channels (real-time or playback)
- Interferometer experts on hand for consulting Learn something new!
- Invasive tests possible
- Excellent training for students & postdocs
 - → Must nurture next generation of experimenters

More scientists at the observatories (cont)

Where is help needed?

- Calibration measurements & modelling (!!!)
- Tracking down, fixing excitation channel glitches / dropouts
- Studies of duty cycle: what limits it, what causes lock losses; improvements
- Studies of drifts, extreme controls values & operating conditions
- Studies of bilinear effects (upconversion)
 - → Data quality; effects on astrophysics searches

Scimons can help!

But new scimon model is needed:

- Too many scimons lost at sea, despite verbose web page instructions and last year's detector investigation camp archive
 - Inadequately trained
 - Unenthusiastic unconvinced of usefulness
- Need knowledgeable and engaged scimons
 - → Fewer scimons doing more shifts per scimon seems desirable
 - → Long stays at the observatories to do shifts and investigations
 - → Natural to carry out investigations relevant to one's analysis group
 - → More effective and likely cheaper due to reduced travel overhead

Online Analysis Needs

Good calibration information

- → With DARM_ERR channel, should be in very good shape already
- → Imminent real-time h(t) generation will be even nice

First-order data quality information

- → We already know of some conditions to flag without further investigation
- → Need to automate DQ flag "publishing" with latency < 1 hour (remove KR bottleneck)
- → Technical details to be worked out with DASWG folks
 - → Some DMT authors will need to assist
 - → Volunteers for infrastructure development welcome (eg., database tools)

Offline Analysis Needs

Refined data quality information (requires human vetting)

- Need scientists willing to take responsibility for regular (e.g., weekly) updates of database data quality information based on particular investigations
- Need infrastructure flexible enough to allow automatic updates, manual updates and correction of errors Revision of flags will occur!

Intensive or long-integration detector studies

- Studying / fixing H1-H2 coherence via auxiliary channel studies (stochastic analysis)
- Studying / fixing instrumental lines in GW channel (pulsar and stochastic analysis)