Seismic Developments at LASTI

LIGO-G050184-00-Z

Luarent Ruet Richard Mittleman Lei Zuo

March 2005

OUTLI NE

 Geophone tilt correction HAM BSC (non-linear bending??)
BSC Stack Characterization Resonant Gain Noise Study
Modal Control/Adaptive Filters

4) Estimators

5) HAM Plant Modifications

 6) System identification noise subtraction Triple BSC Noise Measurements
7) Future Plans

Tilt Correction

The source of tilt can be divided into two categories, inherent and induced.

Geophone Tilt Subtraction

Tilt transfer function of an inertial sensor

 $\frac{Output}{\theta} = \frac{Sensor \, \text{Re sponce}}{f^2}$

Assumptions

- 1) The plant is linear
- 2) The induced angle is proportional to the displacement

We can then predict the tilt-induced signal from the geophones

TILT MODEL

TILT ANGLE IS PROPORTIONAL TO THE DISPLACEMENT

Colocated Geophone Transfer Functions

TO H4 GEOPHONE

TO H4 GEOPHONE

BSC Transfrer Functions from H4

Drive (milliAmps)

BSC Stack Transfer Functions

From the Support table to the Optics Table

Coupling to the X mode of the Optics table

Optical Table X-Mode

Adaptive Algorithm

FIR filter, of length N, has coefficients h

Simulink Diagram

Modal Control Results

Freq (Hz)

Estimator Model

Estimator Math
$$\varepsilon = \hat{y} - y = [Ce]\hat{x} - [Ce]x - [Ce]v$$

Where C_e is a selector Matrix

$$\hat{x} = TF_m K\varepsilon$$

Where TF_m is the model transfer function

if $x \gg v$ A large K will give $\hat{x} = x + v$

A small K will give $\hat{x} \approx 0$

POWER SPECTRUM IN X

Bode Diagram

Estimator Results

Estimator Model

Bode Diagram

Results

Spectrum, control off and estimation+modal control on

Future Estimator Work

How Good does the Model Need to Be?

How do we optimize the Estimator Gain vs. the Control Gain?

Try it on a piece of hardware; the triple pendulum control prototype.

Other Ideas?

Transfer function HEPI to optical table geophones (position)

Transfer function

New acquisition method

 Now use 3 sensors on the ground to clean the extra noise of the ground (amplified by the HEPI platform resonances (7,9,12 Hz))

Z direction

Pla s damping platform, s ende \mathbf{d} O s s а \mathbf{c} а tor s Z pow and er s р С on g roun top of р iers m d \mathbf{e}

 $\chi_{PS} = PS \times B$ Transfer Function from dSpace to Position Sensors

 $\chi_{Geo} = Geo \times B$ Transfer Function from dSpace to Support Table Geophones

 $\chi_{sup} = F_{Geo} \chi_{Geo} + F_{PS} \chi_{PS}$ Open Loop transfer function

 $\tilde{\chi}_{W} = A \times \frac{Wit}{STS}$ Transfer Function from Ground STS to Witness Sensor

 $\chi_W = A \times Wit$ Transfer Function from dSpace to Witness Sensor

$$\frac{\nu(\omega) \times Wit}{\beta(\omega) \times STS} = \frac{\widetilde{\chi}_{w} - K_{2}F_{\sup}F_{PS} \times \left[K_{1}F_{STS}\chi_{Wit} - \chi_{PS}(\frac{Wit}{STS})\right]}{1 + K_{2}\chi_{\sup}}$$

Closed Loop Transfer Function from ground to witness sensor

THE END