

# Advanced LIGO optical configuration investigated in 40meter prototype

#### LSC meeting at LLO

#### Mar. 22, 2005

O. Miyakawa, Caltech and the 40m collaboration

#### LIGO Caltech 40 meter prototype interferometer

#### **Objectives**

- Develop lock acquisition procedure of detuned Resonant Sideband Extraction (RSE) interferometer, as close as possible to Advanced LIGO optical design
- Characterize noise mechanisms
- Verify optical spring and optical resonance effects
- Develop DC readout scheme Next Rob's talk
- Extrapolate to AdLIGO via simulation
- etc.



## **Important Milestones**

#### 2003

LIGO

Installation of Four TMs and BS:done

Lock of FP Michelson :done

#### 2004

Installation of Power Recycling Mirror (PRM), Signal Recycling Mirror (SRM) :done Installation Mach-Zehnder to eliminate sideband of sideband :done

DRMI locked with carrier resonance using dither for Michelson DOF. :done

- DRMI locked with sideband resonance using Double Demodulation(DDM) :done
- Off-resonant lock of signal arm cavity with DRMI :done
- Off-resonant lock of both arm cavities with DRMI :done
- Full carrier resonant of single arm with DRMI :done

#### 2005

Full RSE *:in progress* 

# Arm lock is really really difficult!

## **LIGO** DRMI lock with Unbalanced sideband by detuned cavity

#### August 2004

#### **•DRMI locked with carrier resonance (like GEO configuration)**

- November 2004
- **•DRMI** locked with sideband resonance (Carrier is anti resonant preparing for RSE.)



## SP33,DDM,+/-33M,+/-166M@SP



# 40m Original design of SP DDM

+33 : off-resonant
-33 : off-resonant
+166: resonant
-166 : anti-resonant

- *I*<sub>+</sub> and *I*<sub>s</sub> plot separated
- Difficult to find PRM position without carrier



# Offset $I_{+}$ +0.56 deg, $I_{s}$ +0.56 deg

+33 : resonant -33 : resonant +166: resonant -166 : anti-resonant

- $I_{\perp}$  and  $I_{\leq}$  plot overlapping
- DC line changed
- DC line changed <u>of</u> Easy to find PRM position using 33MHz resonance
- Like AdLIGO configuration
- Carrier would be off resonant



# 40m vs. Ad-LIGO

| 40m | Table 4: Length sensing signals. $\otimes$ means double demodulation. |         |         |         |         |         |           |  |
|-----|-----------------------------------------------------------------------|---------|---------|---------|---------|---------|-----------|--|
|     | Signal                                                                | $L_+$   | $L_{-}$ | $l_+$   | $l_{-}$ | $l_s$   |           |  |
|     | SP, $f_1$                                                             | 15.2    | 0.000   | -0.062  | 0.064   | -0.001  |           |  |
|     | AP, $f_2$                                                             | 0       | 1.69    | 0       | 0.002   | 0       |           |  |
|     | SP, $f_2 - f_1$                                                       | -0.0003 | 0.0001  | (0.214) | 0.029   | 0.039   | <b>x6</b> |  |
|     | AP, $f_2 \otimes f_1$                                                 | 0       | 0       | 0.0025  | -0.0034 | -0.0004 | x1.5      |  |
|     | PO, $f_2 - f_1$                                                       | 0.005   | -0.004  | 1.000   | -0.277  | -2.980  | <b>x3</b> |  |

Table 5: Length sensing signals for Advanced LIGO.  $\otimes$  means double demodulation. These numbers agree, up to an overall constant, with the table Peter Fritchel showed at the August 2000 LSC meeting (LIGO-G000225).

Ad-LIGO

LIGO

| Signal                | $L_+$ | $L_{-}$ | $l_+$  | $l_{-}$ | $l_s$         |
|-----------------------|-------|---------|--------|---------|---------------|
| SP, $f_1$             | 1890  | 0.00    | -1.94  | 0.11    | 0.00          |
| AP, $f_2$             | 0     | -1500   | 0      | -1.88   | 0             |
| SP, $f_2 - f_1$       | -0.11 | -0.01   | (19.5) | -0.11   | 8.66          |
| AP, $f_2 \otimes f_1$ | 0.000 | 0.001   | -0.031 | 0.242   | 0.005         |
| PO, $f_2 - f_1$       | -0.42 | -0.01   | 8.84   | 5.81    | $\boxed{245}$ |

x2 x8 x17

## Problems

- 1. Sideband resonance on arm cavities
- 2. Resonant point shift due to detuned SRC
- 3. 16kHz sampling rate is too slow for 40m.
- 4. Coupling between X arm and Y arm

## Which is first ? DRMI lock or Arms lock?



Resonant point shift



 Resonant point shifts in single arm lock because of carrier phase change in detuned SRC

Digital sampling for 40m RSE configuration



- Due to large seismic motion, 3x10<sup>-6</sup>m at 1Hz assumed here
- Due to very high combined finesse of arm and PRC ~18000.
- Night is about 10 times better but still not enough.
- Needs wider linear error signal.
  - Normalization technique to widen linear range
  - » Slower mirror motion

## Off-resonant lock scheme for arm cavity



LIGO

Error signal is produced by transmitted light as

$$\frac{1}{\sqrt{\text{Transmitted power}}} + \text{offset}$$

1. to avoid coupling through carrier in central part,

2. to widen linear range.

## Off resonant Arm lock with DRMI

DRMI with single arm lock

- Not so difficult
- Last ~10 min

- Lock acquisition time ~1 min
- Switched to POX/POY signal normalized by transmitted light
- Full carrier was stored in each arm cavity separately.
- Both arms lock with DRMI
- Off-resonant carrier on arm cavities
- Last < 1 min</p>
- Locked only 2 times



# Coupling between $L_x$ and $L_y$

CARM/DARM lock

Common of arms(CARM):  $L_{+}=(L_{x}+L_{y})/2$ Differential of arms(DARM):  $L_{-}=L_{x}-L_{y}$ Power recycling cavity:  $I_{+}=(I_{x}+I_{y})/2$ Michelson:  $I_{-}=I_{x}-I_{y}$ Signal recycling cavity:  $I_{s}=(I_{sx}+I_{sy})/2$ 

LIGO

| Port | Dem.<br>Freq.    | L <sub>+</sub> | L_      | <b>/</b> + | I_      | l <sub>s</sub> |
|------|------------------|----------------|---------|------------|---------|----------------|
| SP   | f <sub>1</sub>   | 1              | -3.8E-9 | -1.2E-3    | -1.3E-6 | -2.3E-6        |
| AP   | f <sub>2</sub>   | -4.8E-9        | 1       | 1.2E-8     | 1.3E-3  | -1.7E-8        |
| SP   | $f_1 \times f_2$ | -1.7E-3        | -3.0E-4 | 1          | -3.2E-2 | -1.0E-1        |
| AP   | $f_1 \times f_2$ | -6.2E-4        | 1.5E-3  | 7.5E-1     | 1       | 7.1E-2         |
| PO   | $f_1 \times f_2$ | 3.6E-3         | 2.7E-3  | 4.6E-1     | -2.3E-2 | 1              |

# $Laser PRM \downarrow I I My$ $Laser PRM \downarrow I My$ Laser PRM

**ETMy** 

#### POX/POY lock

| Port | Dem.<br>Freq.    | L <sub>x</sub> | L <sub>y</sub> | Ι <sub>+</sub> | I_      | l <sub>s</sub> |
|------|------------------|----------------|----------------|----------------|---------|----------------|
| SP   | f <sub>1</sub>   | 1              | 9.4E-1         | -1.2E-3        | -1.3E-6 | -2.3E-6        |
| AP   | f <sub>2</sub>   | 9.4E-1         | 1              | 1.2E-8         | 1.3E-3  | -1.7E-8        |
| SP   | $f_1 \times f_2$ | -1.7E-3        | -3.0E-4        | 1              | -3.2E-2 | -1.0E-1        |
| AP   | $f_1 \times f_2$ | -6.2E-4        | 1.5E-3         | 7.5E-1         | 1       | 7.1E-2         |
| PO   | $f_1 \times f_2$ | 3.6E-3         | 2.7E-3         | 4.6E-1         | -2.3E-2 | 1              |

• Coupling is 94% when carrier is resonant.

» Off-resonant lock for arms

LSC meeting at LLO, March 2005

## The way to RSE



## Way from off-resonant lock to com/diff lock



#### Normalized SP166 for CARM

![](_page_17_Figure_1.jpeg)

~0.1degree for 33MHz

#### e2e SIMULATION: 40m/AdvLIGO package optical configuration

#### **IFO with Arms**

#### **IFO Central part**

![](_page_18_Figure_3.jpeg)

## e2e SIMULATION: 40m/AdvLIGO package

• E2E validation of DC fields comparing with TWIDDLE results: good agreement !

• E2E transfer functions simulations (and comparison with TWIDDLE ones) of DOF at SP, AP and PO shaking the end mirrors with white noise at different demodulation frequencies : (33,133,166,199) MHz

![](_page_19_Figure_3.jpeg)