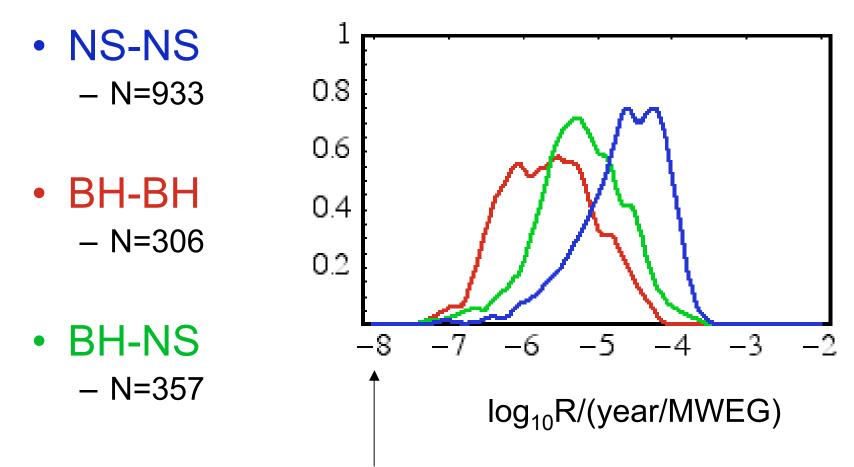
Expected compact-object merger rates

LSC Mar-22-2005

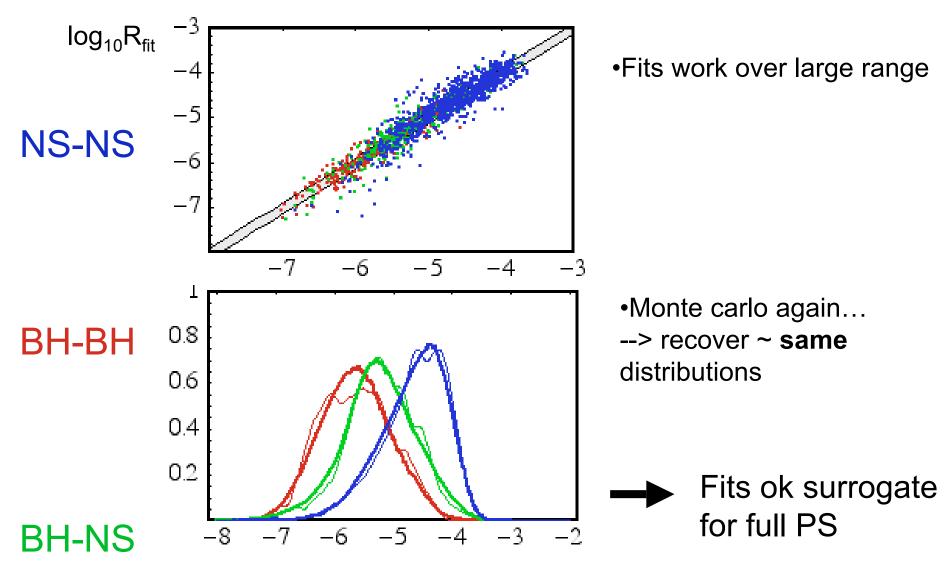
R. O'Shaughnessy, C. Kim, T. Fragkos, V. Kalogera, Northwestern University

LIGO-G050199-00-Z


Outline

- Prior predictions
 - Population synthesis
 - Results: BH-BH, NS-NS, BH-NS rates
- Observational constraints (preliminary)
 - Observations
 - Constrained predictions
 - Merging NS-NS (recycled)
 - Wide NS-NS (recycled)
 - Both
- Advanced LIGO event rate
 - Results
 - Significance for astrophysics (!)

Prior predictions


- Population synthesis:
 - Evolve N binaries from birth to present
 - Stop when n events (e.g., mergers) occur
 →rate known to 1/√n
 - Repeat :
 - many parameters for unknowns (7 matter)
 - Many objects of interest (BH-BH, NS-NS, etc)
- Practical necessities:
 - *Filters*: Speed up code by rejecting some binaries a priori (ApJ 620, 385)
 - Fitting: Fit rates to allow constraints to be imposed

Prior Results: Rate Histograms

Lower bound is well-resolved

Prior Results: Fits

log₁₀R/(year/MWEG)

NS-NS observations

).5

-8

Merging Binaries (3) -

- 3 seen [J0737, B1913, B1534]
- Will merge through GW emission 1.5
- <u>Recycled</u> pulsars only (selection)
- Merger rate CI (95%):
 - 29/Myr R < 320 / Myr
- Wide Binaries (3)
 - 3 seen [**J1811**, J1518, J1829]
 - Not merging w/in age of galaxy
 - <u>Recycled</u> pulsars only (selection)
 - ...and few recycled pulsars occur in wide binaries
 - Merger rate CI (95%):
 - 0.16/Myr> R > 1.8 / Myr

R=formation rate

7 - 6 - 5 - 4log₁₀R/(year/MWEG)

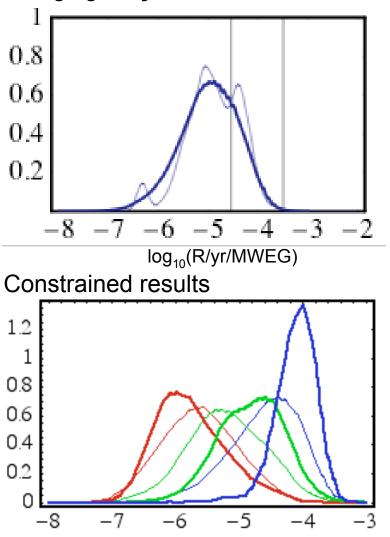
-3

Constraining rate 1: Merging NS-NS

• <u>Method</u>

- Use data for **recycled** merging NS-NS binaries
- Fit rate for above
- Monte carlo +

Reject inconsistent models


[= outside 95% confidence interval of **observed** merging NS-NS]

- Excludes 76% of models
- Regenerate histograms

<u>Results</u>:

$$= 1.8 / Myr$$

 $\cdot down x 0.75$
 $= 63 / Myr$
 $\cdot up x 3.2$
 $= 15 / Myr$
 $\cdot up x 2.6$

Merging recycled NS-NS

Constraining rate 2: Wide NS-NS

• <u>Method</u>

- Find (rare) wide recycled NS-NS in data
- Fit rate for above
- Monte carlo + reject
 - Excludes 70% of models
- Regenerate histograms

 Results:

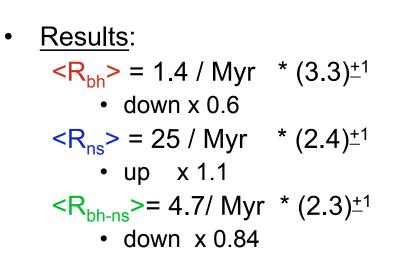
 $< R_{bh} > = 1.4 / Myr$

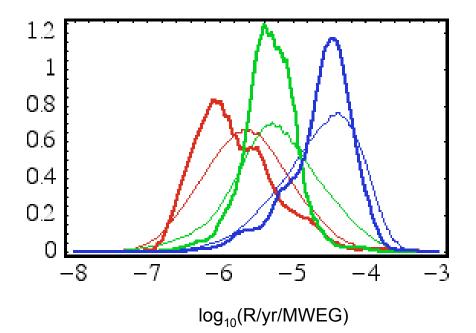
 • down x 0.6

 $< R_{ns} > = 6.6 / Myr$

 • down x 0.3

 $< R_{bh-ns} > = 1.6 / Myr$


 • down x 0.3


1 0.80.60.4 0.2 -6 -5 -4 -7-8-3log₁₀(R/yr/MWEG) **Constrained results** 0.8 0.6 0.4 0.2 C -6 -5 -8

Wide recycled NS-NS

Constraining rate 3: All (recycled) NS-NS

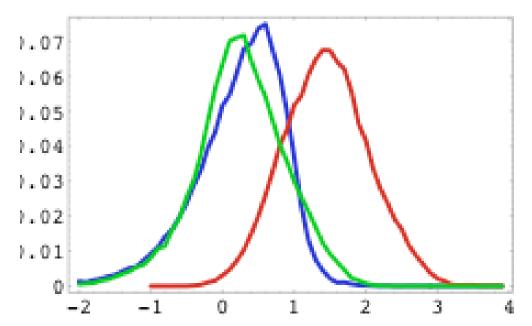
- <u>Method</u>:
 - Monte carlo + reject
 - ...require both constraints

...consistent with prior ...<u>narrower</u> distributions

Advanced LIGO Detection rate

Formulae

 $D = 191 Mpc(M_c / 1.2M_o)$ $R_{LIGO} = 0.038 R_{Myr} < (M_c / M_o)^3 >$


Chirp mass distribution

...**must** assume fixed (b/c of fake data/fits)

- $-NS-NS: \langle M_c^3 \rangle = 2.3 M_0^3$ [vs 1.8]
- $-BH-NS: \langle M_c^3 \rangle = 9.2 M_0^3$ [vs 27]
- BH-BH: $< M_c^3 >= 355 M_0^3$ [vs 670]

Advanced LIGO Detection rate

- Advanced LIGO will see (many) BH-BH mergers
- <u>Small</u> increases in range matter: guarantee BH-NS and NS-NS mergers

Accurate BH-BH rate determination expected

--> strong constraint on astrophysics

Note: Single-detector rates shown

Conclusions

- Present Status
 - Applying constraints from NS-NS observations
 - Merging
 - Wide
 - Both simultaneously
 - Results:
 - Rates better constrained (=smaller variance)
 - Advanced LIGO will see mergers
- Future Directions
 - Additional observational constraints
 - (eccentric PSR-WD, supernova rates, absence of BH-PSR)
 - Further constraints on PS model input parameters (e.g. tighter constraints on SN kicks)