Status of High Power Laser Development at Stanford

Shally Saraf Stanford University

LSC meeting

LIGO, Livingston

March 20-23, 2005

LIGO G050206-00-Z

Stanford High Power Laser Lab

*saraf@stanford.edu

Outline

- Slab Laser Amplifiers - 100 W MOPA experiment using end-pumped slabs
- Quantum noise measurements in amplifiers - Saturated amplifier quantum noise experiment
- One-step power scaling
 - 30 W amplifier module
- 200 W MOPA
 - 2 end-pumped power amplifier stages
- Future work

Experimental setup for MOPA experiment

End-pumped Amplifier Slab Geometry

End-pumped slab laser head

 \checkmark 1 mm² slab ends pumped with up to 300 W on a 400 µm spot size!

Results of MOPA experiment

-Depolarization ~ 1.5%.

–P-P intensity fluctuations < 2%

 $-M^2 < 1.08$, TEM₀₀ content 74 %.

✓ Double Pass Power Output ~ 104 W

-Angular multiplexing avoids Faraday rotator.

-Depolarization < 3%.

–P-P intensity fluctuations < 2%

 $-M^2 < 1.09$, TEM₀₀ content 89 %.

Saraf, et.al., Submitted Opt. Lett., (2004)

Saturated Amplifier Noise Measurement

•Direct noise measurement on a high power beam is difficult.

•Attenuating a high power beam for photodetection makes it SNL.

✓ Piggy-back a low-power probe beam and measure quantum noise of the probe.

Experiment Block Diagram

Probe Beam Generation

Laser : Non-Planar Ring Oscillator (NPRO) Locking Technique: Pound-Drever-Hall

• Laser frequency follows stable cavity.

• Temporal filtering by high finesse cavity reduces power noise of the master oscillator. (~34 dB at 4 MHz)

• Spatial filtering results in < 0.1% higher-order transverse mode content.

Willke, et.al, *Opt. Lett.*, 23, 1704(1998)

Fast Servo: Drives piezo on YAG crystal Slow Servo: Drives TEC controller on YAG crystal Length + refractive index control => Frequency Control!

✓ Output of mode cleaner is a single spatial mode shot-noise-limited at 4 MHz!

High Power Beam Generation

✓ Maximum TEM₀₀ power output of cavity = 30 W with fixed pointing and a defined waist size and location.

Beam Combination and Amplification

Saturated Amplifier Noise Experiment Setup

Post Filtering

Balanced Detection

- Matched InGaAs photodiodes and transimpedance amplifiers.
- 45 mA photocurrent per photodiode for all measurements
- Linear power and RF response.
- Measurement frequency range 6.25 MHz 15.625 MHz

✓ Sum signal \rightarrow Total noise power, Difference signal \rightarrow Shot noise reference

Linearity Check and Noise Traces

Quantum Noise versus Power Gain

Quantum Noise and Power Extraction

 Extraction efficiency increases and quantum noise decreases as the amplifier is saturated.

10 W \rightarrow 30 W in One Step

10 W LIGO Laser

30 W Amplifier Module

30 W Amplifier Key Points

- Pin = 8.4 W, Pout = 31.5 W. Extracted power is 23.1 W.
- First two rods in the amplifier are not fully saturated.
 Careful modematching and double pass could pull out another 6-8 W.
 => Output could get close to 40 W!
- Beam Quality is excellent.
- Module has been reliable and worked in the lab for three years.
- TEM_{00} content needs to be measured with a mode cleaner?

Scaling to 200 W

Problems with Pump Diodes

• Received pump modules from LIMO with smashed optics.

• Pump spot size after refocussing module is 700 $\mu~$ instead of 400 $\mu~$

- Procuring new lenses from vendor. (unnecessary delay!)

End-pumped Slab #2

✓ Wavelength tuned to 808 nm with chiller temperature and flow rate.
✓ Pump power ~ 250 W/module.

Work in Progress!

Gain Measurements

•Input signal intensity ~ $6.6 * I_{sat}$

✓ Saturated amplifier sees the no-ASE gain!!

Parasitic Suppression and Power Extraction

• Estimated double pass extraction from slab with cladding > 110 W!

✓ Claddings significantly improve gain and extraction from slabs with parasitic suppression. ✓ Heavily saturated end-pumped slab # 2 could use a slab with polished sides => $P_{extracted}$ can potentially be >150 W!

Future Work

- Complete power scaling experiment to 200 W.
 - Use end-pumped slab with polished sides to scale to the 250 W level?
- Quantify TEM_{00} content with a locked mode cleaner
- Pointing and polarization stability measurements
- RIN measurements
- Measure frequency noise?
- Reliability test for 1000 hrs?