Detection of 10⁻²¹ strain of space-time with an optical interferometer

Sanichiro Yoshida Southeastern Louisiana University

Presented at 2005 SEM annual meeting June 7-9, 2005, Portland, OR

LIGO-G050326-00-E

Acknowledgment

National Science Foundation
 Louisiana Board of Regents
 LIGO* Livingston Observatory
 LIGO Scientific Collaboration
 Southeastern Louisiana University

*LIGO: Laser Interferometer Gravitational-wave Observatory LIGO-G050326-00-E 2

Contents of talk

- 1. Gravitational wave?
- 2. LIGO I* detector overview
- 3. Technical issues
 - Suspended optics and local damping
 - Length sensing control and signal readout
 - Other control systems

•First generation of LIGO detector www.ligo.caltech.edu

General relativity (2)

Acceleration (Gravity

LIGO-G050326-00-E

General relativity (3)

LIGO-G050326-00-E

Schematic illustration of relative phase difference

Need to increase L!

Make it quiet at GW signal frequency

B. Barish, .LIGO-G030535-00-M

Limited by:

Seismic noise (low v), Thermal Noise (middle v), Shot Noise (high v)

Schematic view of LIGO I interferometer

Suspended optics on optical tables

isolation stack

LIGO Hanford WA

LIGO Livingston LA

LIGO-

Horizontally accessible module (HAM)

LIGO-G050326-00-E

Large optics suspension

LIGO-G050326-00-E

Technical issues

Technical issues overview

Suspended optic and Local damping control

Suspended optics

Suspended optics local damping servo

Suspended optics sensor signals

Optic's resonance

Optic's resonance

Local damp off

Local damp on

Locking cavity by Length sensing control

Pound-Drever-Hall Method

 $PD_{signal} \propto P \propto E_c E_s e^{jn\Omega t}$: $PD_{signal} = 0$ only when $E_c = 0$

Apply control till $PD_{signal} = 0!$: High cavity $Q \rightarrow$ high gain

Cavity response to length change

Design filter to cancel amplitude/ Phase frequency dependence.

Force to ΔL transfer function

Force: COIL force

 ΔL : mirror distance

JGO-G050326-00-Е

33

Cavity length change readout and GW signal detection

How to detect cavity length change?

- 1. Lock the cavity.
- Detect and correct ∆L by Pound-Drever-Hall scheme.
- Analyze feedback (error) signal.
 "Use templates of known GW signals."

Error signal

L_+ (common mode) = $(L_X + L_Y)/2$	S-port-I, RC-port-I	EIMX, E	IWIY
L_{-} (differential mode) = ($L_{X} - L_{Y}$)/2	AS-port-Q	ETMx, ETMy	
l_+ (recycling cavity) = $(l_X + l_Y)/2$	S-port-I, RC-port-I	RM	
1_ (Michelson cavity) = $(l_X - l_Y)/2_{IGO-G0}$		BS	36

Dark port signal

 $P_{AS} \propto 1 + \cos 2(\phi_0 + \phi_{gw} + \Gamma \sin \Omega t) \quad : \text{ Intensity at Dark Port}$ $= 1 + \cos(2\phi_0 + 2\phi_{gw}) \cos(2 \Gamma \sin \Omega t) - \sin(2\phi_0 + 2\phi_{gw}) \sin(2\Gamma \sin \Omega t)$

 $\cos(2 \Gamma \sin\Omega t) = J_0(2 \Gamma) + J_2(2 \Gamma) \cos(2\Omega t)$ $\sin(2 \Gamma \sin\Omega t) = 2J_1(2 \Gamma) \sin(\Omega t)$ $\Phi_0 = \pi/2, \cos(2\phi_{gw}) \cong 1, \text{ and } \sin(2\phi_{gw}) \cong 2\phi_{gw}$

=1-[J₀(2 Γ)+J₂(2 Γ) cos(2 Ω t)] + (2 ϕ_{gw}) 2J₁(2 Γ)sin(Ω t) J₀(2 Γ)=1- Γ^2 , J₁(2 Γ)= Γ , and J₂(2 Γ) = $\Gamma^2/2$

=1- $[(1 - \Gamma^2) + (\Gamma^2/2) \cos(2\Omega t)] + 2\phi_{gw} 2 \Gamma \sin(\Omega t)$

 $= \Gamma^2 - (\Gamma^2/2) \cos(2\Omega t) + 4\phi_{gw} \Gamma \sin(\Omega t)$

 $\phi_{gw} \propto Q$ -phase demodulation at Ω_{0-E}

Other control systems

Wave front sensing

Thermal compensation

Input test mass

Better mode matching

Thank you!

LIGO detector (Michelson Interferometer)

Small optics suspension

LIGO-G050326-00-E