

ETG Sensitivity and Efficiency to Simulations: BlockNormal and SLOPE

Amber L. Stuver
Penn State University

Background and Motivation

- ETGs are not fundamentally equivalent
- Signal properties that ETGs were sensitive to was not initially obvious (see LIGO-G050110)
- What, then, are the signal properties that each ETG favor?
- To determine specific signal sensitivities:
 - » Simulate signals of different lengths and amplitudes and inject into a white noise background (zero mean and unit variance)
 - » Compare efficiencies for various signals to a baseline efficiency using Gaussian modulated white noise bursts

Gaussian Modulated White Noise

Gaussian Modulated White Noise

Baseline Observations

- The efficiencies of both ETGs are dominated by the amplitude of the burst as long as the duration is not "very short" (< ~0.025 sec)
- The A_{50} is in about the same area ($A_{rss} = 0.4 0.8 \sigma$) for both ETGs. However, the efficiency increases faster, wrt A_{rss} , for BlockNormal than SLOPE
- There is a much higher false rate for SLOPE than BlockNormal:

	Tuned False Rate Current False F		
BlockNormal	0.55 events/s	1.52 events/s	
Slope	0.56 events/s	ents/s 4.33 events/s	

A₅₀ for Different Signals

BlockNormal

BlockNormal A₅₀ WRT to Signal Duration White System Sys

SLOPE

LIGO

Sigmoid Slopes for Different Signals

BlockNormal

BlockNormal Sigmoid Slope WRT to Signal Duration White S064 - 8416 - 84

SLOPE

Measuring ETG Performance WRT a Population

- Convolve the efficiency surface with a population
- The integral of this gives a measure of and ETG's performance WRT a population

$$P \propto \begin{cases} \iint \epsilon(A_{rss}, \tau) A_{rss}^{-3} dA_{rss} d\tau, \text{ for disk} \\ \iint \epsilon(A_{rss}, \tau) A_{rss}^{-4} dA_{rss} d\tau, \text{ for isotropic} \end{cases}$$

LIGO

ROUGH

Measured Population Performances

		Disk (~ A ⁻³)		Isotropic (~ A ⁻⁴)	
		BlockNormal	SLOPE	BlockNormal	SLOPE
White Noise		0.81	1*	0.41	1*
SG	16 Hz	1.08	2.72	0.81	8.34
	64 Hz	1.07	0.85	0.92	1.89
	16 Hz	1.23	2.53	1.11	7.49
ВН	64 Hz	0.97	0.44	0.49	1.59

- BlockNormal has fairly consistent performance over different signal types
- While SLOPE's performance can be higher, it is not as reliable

Conclusions

- The overall shape of the efficiency sigmoid is more meaningful than just the A₅₀ for describing an ETG's performance
- BlockNormal's efficiency does not have a significant frequency dependence while SLOPE does.
- BlockNormal's performance is relatively constant over different signals and frequencies. SLOPE can perform much better on some signals and much worse on others.
- The background noise largely effects the tuning performance of the ETGs.