Error Function Filter Robert L. Coldwell University of Florida

LSC August 2005

LIGO-G050352-00-Z

Reducing the number of data points

Introduction

- Discrete Fourier Transform Definitions
- The Nyquist Theorem
- Ideal Filter/Error Function Filter
- Pulsar numbers
- Dramatically reducing the number of needed data points

DFT definitions

$$
\begin{aligned}
t_{i} \equiv i T / N & =i \Delta_{t} \quad f_{m} \equiv m / T \quad j \equiv \sqrt{-1} \\
D\left[f_{m}\right] \equiv & \equiv \frac{T}{N} \sum_{i=-=-2 / 2}^{N / 2-1} d\left[t_{i}\right] \exp \left(j 2 \pi f_{m} t_{i}\right) \\
& \cong \int_{-T / 2}^{T / 2} d(t) \exp \left(j 2 \pi f_{m} t\right) d t \\
d\left[t_{i}\right]= & \frac{1}{T} \sum_{m=-N / 2}^{N / 2-1} D\left[f_{m}\right] \exp \left(-j 2 \pi f_{m} t_{i}\right) \\
& \cong \int_{-1 / 2 \Delta_{t}}^{1 / 2 \Lambda_{t}} D(f) \exp \left(-j 2 \pi f_{i}\right) d f
\end{aligned}
$$

Convolution

Frequency

$$
\begin{aligned}
& \frac{1}{T} \sum_{n=-N / 2}^{N / 2-1} X\left(f_{n}\right) S\left(f_{m}-f_{n}\right)=\Delta_{t} \sum_{i=-N / 2}^{N / 2-1} x\left(t_{i}\right) s\left(t_{i}\right) \exp \left(j 2 \pi f_{m} t_{i}\right) \\
& \quad=X S\left(f_{m}\right)
\end{aligned}
$$

Time

$$
\begin{aligned}
& \Delta_{t} \sum_{n=-N / 2}^{N / 2-1} x\left(t_{n}\right) s\left(t_{m}-t_{n}\right)=\frac{1}{T} \sum_{i=-N / 2}^{N / 2-1} X\left(f_{i}\right) S\left(f_{i}\right) \exp \left(-j 2 \pi f_{m} t_{i}\right) \\
& \quad=x s\left(t_{m}\right)
\end{aligned}
$$

Nyquist Theorem ${ }^{1}$

Define

$$
\begin{gathered}
N_{\infty}=M N \\
T=N_{\infty} \Delta_{\infty}=N \Delta_{t} \\
f_{m}=\frac{m}{T} \quad-\frac{N_{\infty}}{2}<m<\frac{N_{\infty}}{2}
\end{gathered}
$$

${ }^{1}$ Loosely based on Alan V. Oppenheimer, Ronald W. Schafer with John R. Buck, Discrete-time Signal Processing - Prentice Hall Signal Processing Series - Alan V. Oppenheimer, editor, Second edition 1999 first 1989

Data versus time

$$
\begin{aligned}
s\left(t_{k}\right) & \equiv M \sum_{i=-N / 2}^{N / 2-1} \delta_{k, M i} \\
S\left(f_{m}\right) & =\Delta_{\infty} M \sum_{i=-N / 2}^{N / 2-1} \sum_{k=-N_{\infty} / 2}^{N_{\infty} / 2-1} \delta_{k, M i} \exp \left(j 2 \pi f_{m} t_{k}\right) \\
& =\Delta_{t} \sum_{i=-N / 2}^{N / 2-1} \exp \left(j 2 \pi \frac{m}{T} M i \frac{T}{N_{\infty}}\right)
\end{aligned}
$$

Note upper limit of $\mathrm{N} / 2-1$

$$
=\Delta_{t} \sum_{i=-N / 2}^{N / 2-1} \exp \left(j 2 \pi i \frac{m}{N}\right)
$$

This sum is N for $m=k N$, zero otherwise
The function $\mathrm{s}(\mathrm{t})$

$S\left(f_{m}\right)=\frac{T}{N} N \sum_{k=-M / 2}^{M / 2-1} \delta_{m, k N}=T \sum_{k=-M / 2}^{M / 2-1} \delta_{m, k N}$ $d_{\text {samp }}\left(t_{k}\right)=d_{\text {cont }}\left(t_{k}\right) s\left(t_{k}\right)$

This is set up for convolution

$$
D_{\text {samp }}\left(f_{m}\right)=\frac{1}{T} \sum_{n=-N_{\infty} / 2}^{N_{\infty} / 2-1} D_{\text {cont }}\left(f_{n}\right) S\left(f_{m}-f_{n}\right)
$$

Inserting S(f)

$$
\begin{aligned}
D_{\text {samp }}\left(f_{m}\right) & =\frac{1}{T} T \sum_{k=-M / 2}^{M / 2-1} \sum_{n=-N_{\infty} / 2}^{N_{\infty} / 2-1} D_{\text {cont }}\left(f_{n}\right) \delta_{(n-m), k N} \\
& =\sum_{k=-M / 2}^{M / 2} \sum_{n=-N_{\infty} / 2}^{N_{\infty} / 2-1} D_{\text {cont }}\left(f_{n}\right) \delta_{(n-m), k N} \\
& =\sum_{k=-M / 2}^{M / 2-1} D_{\text {cont }}\left(f_{m+k N}\right) \\
f_{k N} & =\frac{k N}{T}=\frac{k}{\Delta_{t}} \quad \begin{array}{l}
\text { Damp } \\
\text { construction }
\end{array}
\end{aligned}
$$

Nyquist theorem in frequency

Back Transform

- The back transform over all N_{∞} points is not wanted since it will produce the spiky function transformed forward.
- Define an ideal filter as

$$
H(f)=\left\{\begin{array}{lr}
1 / 2 & |f|=1 /\left(2 \Delta_{t}\right) \\
1-1 /\left(2 \Delta_{t}\right)<f<1 /\left(2 \Delta_{t}\right) \\
0 & |f|>1 /\left(2 \Delta_{t}\right)
\end{array}\right.
$$

$$
D_{\text {samp }}\left(f_{m}\right) H\left(f_{m}\right)=\frac{1}{T} \sum_{k=-M / 2}^{M / 2-1} D_{\text {cont }}\left(f_{m+k N}\right) H\left(f_{m}\right)
$$

The sum is over M as in $\mathrm{N} \infty=\mathrm{M} \times \mathrm{N}$
With appropriate restrictions

$$
D_{\text {oom }}\left(f_{m}\right)=D_{\text {samp }}\left(f_{m}\right) H\left(f_{m}\right)
$$

But in any case define

$$
D_{H}\left(f_{m}\right)=D_{s a m p}\left(f_{m}\right) H\left(f_{m}\right)
$$

This form is a setup for convolution

Using the convolution theorem

$$
\begin{aligned}
& d_{H}\left(t_{m}=m \Delta_{\infty}\right)=\Delta_{\infty} \sum_{i=-N_{\infty} / 2}^{N_{\infty} / 2-1} d_{\text {samp }}\left(t_{i}\right) h\left(t_{m}-t_{i}\right) \\
& \quad=M \Delta_{\infty} \sum_{i=-N_{\infty} / 2}^{N_{\infty} / 2-1} d_{\text {cont }}\left(t_{i}\right) \delta_{i k} h\left(t_{k}-t_{i}\right) \quad t_{i}=i \Delta_{\infty} \\
& \quad=\Delta_{t} \sum_{k=-N / 2}^{N / 2-1} d_{\text {cont }}\left(t_{k}\right) h\left(t_{m}-t_{k}\right) \quad t_{k}=k \Delta_{t}
\end{aligned}
$$

The time t_{m} is any time, the time t_{k} is for a data point.
This is where the dramatic reduction in data points needed takes place.
The Nyquist Theorem in time

Ideal Filter/Error Function Filter

The ideal f_{0} to f_{1} filter

Details of the filter near the two ends

Ideal filter transformation
The fact that this sum is to N_{∞}

$$
\begin{aligned}
& h\left(t_{i} ; f_{0}, f_{1}\right)=\frac{1}{T} \sum_{i=-N_{\infty} / 2}^{N_{\infty} / 2-1} H\left(f_{m} ; f_{0}, f_{1}\right) \exp \left(-j 2 \pi f_{m} t_{i}\right) \\
& h\left(t_{i} ; f_{0}, f_{1}\right)=\frac{1}{T} \sum_{m=m_{0}}^{m=m_{1}-1} \exp (-j 2 \pi f t) \\
& \quad-\frac{1}{2 T}\left(\exp \left(-j 2 \pi \frac{m_{0}}{T} t\right)-\exp \left(-j 2 \pi \frac{m_{1}}{T} t\right)\right) \\
& \text { Subrtacting } 1 / 2 \text { the first term } \uparrow \quad \text { The extra term } \uparrow
\end{aligned}
$$

A few steps are skipped involving $1 /(1-\exp (-\mathrm{j} 2 \pi 1 / \mathrm{T}))$. All steps are rigorous for the sums

Ideal $h\left(t, f_{0}, f_{1}\right)$

$$
h(t)=\exp \left(-j \pi\left(f_{0}+f_{1}\right) t\right) \times
$$

$$
\left[\frac{\sin \left(\pi\left(f_{1}-f_{0}\right) t\right) \cos \left(\pi \frac{t}{T}\right)}{T \sin \left(\pi \frac{t}{T}\right)}\right]
$$

The second term as $\mathrm{T} \rightarrow \infty \rightarrow \frac{\sin \left(\pi\left(f_{1}-f_{0}\right) t\right)}{\pi t}$

Error function filter

$\operatorname{AiGauss}\left(f ; f_{0}, w\right) \equiv \int_{-\infty}^{f} \frac{1}{w \sqrt{\pi}} \exp \left(-\left(\frac{x-f_{0}}{w}\right)^{2}\right) d x$ Let $\mathrm{x}=\left(\mathrm{f}-\mathrm{f}_{\mathrm{o}}\right) / \mathrm{w}$, then for $\mathrm{f}<\mathrm{f}_{0}$
$\operatorname{AiGauss}\left(f ; f_{0}, w\right)=.5(1-\operatorname{erf}(x))$
And for $\mathrm{f}>\mathrm{f}_{0}$
Equivalent erfs allow overlapping regions to exactly sum to 1
$\operatorname{AiGauss}\left(f ; f_{0}, w\right)=.5(1+\operatorname{erf}(x))$

$H_{\text {errf }}\left(f, f_{0}, f_{1}\right)$

$H_{\text {erf }}\left(f ; f_{0}, f_{1}, w\right) \equiv$
AiGauss $\left(f ; f_{0}, w\right)-\operatorname{AiGauss}\left(f ; f_{1}, w\right)$

The $\mathrm{f}_{0}=59 \mathrm{~Hz}, \mathrm{f}_{1}=61 \mathrm{~Hz} \mathrm{w}=0.125 \mathrm{~Hz}$.

Error function filter/ ideal filter

$h_{\text {erff }}\left(t, f_{0}, f_{1}, w\right)$

Approximation of the integral result requires integration by parts

$$
\begin{aligned}
& h_{\text {erffI }}\left(t ; f_{0}, f_{1}, w\right)=\exp \left(-\pi^{2} w^{2} t^{2}\right) \times \\
& \quad \exp \left(-j \pi\left(f_{0}+f_{1}\right) t\right) \frac{\sin \left(\pi\left(f_{1}-f_{0}\right) t\right)}{\pi t}
\end{aligned}
$$

In a reversal of the Nyquist theorem, the correctly periodic version is
The $\exp \left(-(\pi \omega t)^{2}\right)$ term makes the sum rapidly convergent

$$
h_{\text {errf }}\left(t ; f_{0}, f_{1}, w\right)=\sum_{k=-\infty}^{\infty} h_{\text {errfI }}\left(t+k T ; f_{0}, f_{1}, w\right)
$$

This now differs from the ideal filter only by the exponential factor.

Limiting the convolution range

For $|t-t k|>6 /(\pi w)$, the exponential part of $\mathrm{h}(\mathrm{t}, \mathrm{fO}, \mathrm{f} 1, \mathrm{w})$ is less then

$$
\exp _{f}=\exp \left(-\left(\pi w \frac{6}{\pi w}\right)^{2}\right)=\exp (-36)=2.3 \mathrm{e}-16
$$

This leads to a definition $\mathrm{k}_{\text {min }}(\mathrm{t})=(\mathrm{t}-6 /(\pi \mathrm{w})) / \Delta \mathrm{t}$ such that

$$
d_{H}(t)=\Delta_{t} \sum_{k_{\min }(t)}^{k_{\max }(t)} d_{c o n t}\left(t_{k}\right) h\left(t-t_{k}\right) \quad t_{k}=k \Delta_{t}
$$

Even for infinite T, this sum is finite. For t such that $\mathrm{k}_{\text {min }}(\mathrm{t})>-\mathrm{N} / 2$ and $\mathrm{k}_{\text {max }}(\mathrm{t})<\mathrm{N} / 2 \mathrm{~d}_{\mathrm{H}}(\mathrm{t})$ does not depend on T

Time in seconds.

$h\left(t, f_{0}, f_{1}, w\right)$

The oscillations can be used to shift the frequency. Note that h can be calculated once, then shifted and re-used over and over, the sine and cosines need not be recalculated. Convolution reduces to a single/set of multiplications and sums for each outpyt data point.

Small region of time showing the oscillations in real and imaginary $\mathrm{h}(\mathrm{t})$

Splitting the Space

Second region

The convolution with $h\left(t, f_{1}, f_{2}, w\right)$ produces complex data. The imaginary part is shown above.

Second region in frequency

Real part of transform of convoluted data between 32/Time and 50/time using 50-32+10 data points

Second region in frequency

Real part of transform of convoluted data between 32/Time and 50/time using 50-32+10 data points

Pulsar numbers

The size of F was found by Cornish and Larson to be $\sim 0.01 \mathrm{~Hz}[i]$, Thus there needs to be an output point every 10 seconds to follow the Doppler motion of B0531+21 which has a quadrupole frequency of $59.62 \pm 0.01 \mathrm{~Hz}$.
[i] Neil J. Cornish and Shane L. Larson, "LISA data analysis: Doppler demodulation", Class. Quantum Grav. 20 (2003) S163-S170 - online at stacks.iop.org/CQG/20/S163

$|\mathrm{h}(\mathrm{t})|$ for 0.02 width signal

The time range on this plot is from -500 seconds to +500 seconds.

Omissions

The phase will need to be monitored, if it drifts the signal will cancel to zero. - possibly the violin modes will help.

If the convolution went straight from the input data, noise in the region would in principle rise as $\mathrm{T}^{1 / 2}$ while the signal would rise as T .

The noise is systematic and has many properties that identify it, an intermediate step in which known sources of frequencies that overlap the pulsar frequency are examined and removed will be investigated.

