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Reducing the number of data 
points



Introduction

• Discrete Fourier Transform Definitions
• The Nyquist Theorem
• Ideal Filter/Error Function Filter
• Pulsar numbers
• Dramatically reducing the number of 

needed data points



DFT definitions
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Convolution
Frequency
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Time
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Nyquist Theorem1

Define
N MN∞ =
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1 Loosely based on Alan V. Oppenheimer, Ronald W. Schafer with John 
R. Buck, Discrete-time Signal Processing – Prentice Hall Signal 
Processing Series – Alan V. Oppenheimer, editor, Second edition 1999 –
first 1989



Data versus time
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Note upper limit of N/2-1

This sum is N 
for m=kN, zero 
otherwise

The function s(t)
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( ) ( ) ( )samp k cont k kd t d t s t=
This is set up for convolution

( ) ( ) ( )
/ 2 1

/ 2

1 N

samp m cont n m n
n N

D f D f S f f
T

∞

∞

−

=−

= −∑



Inserting  S(f) 
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Nyquist theorem in frequency



Back Transform

• The back transform over all N∞ points is 
not wanted since it will produce the spiky 
function transformed forward.  

• Define an ideal filter as
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Using the convolution theorem
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The Nyquist Theorem in time

The time tm is any time, the time tk is for a data point.
This is where the dramatic reduction in data points 
needed takes place.



Ideal Filter/Error Function Filter

H is not required to extend from 
-1/2∆t to 1/2∆t 

The ideal f0 to f1 filter



Details of the filter near the two ends
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Subrtacting ½ the first term ↑

Ideal filter transformation

A few steps are skipped involving 1/(1-exp(-j2π1/T)).  All steps are 
rigorous for the sums



Ideal h(t,f0,f1)
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Error function filter
2
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Equivalent erfs allow overlapping 
regions to exactly sum to 1



Herrf(f,f0,f1)
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The f0 = 59 Hz, f1=61 Hz w = 0.125 Hz.  



Error function filter/ ideal filter

∆f = 1/7 sec. w=∆f



herrf(t,f0,f1,w)
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Approximation of the integral result requires integration by parts

In a reversal of the Nyquist theorem, the correctly periodic version is
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The exp(-(πwt)2) term makes the sum rapidly convergent

This now differs from the ideal filter only by the exponential factor.



Limiting the convolution range
For |t-tk| > 6/(πw), the exponential part of 

h(t,f0,f1,w) is less then 
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|h(t,f0,f1,w)|

Time in seconds.



h(t,f0,f1,w)

Small region of time showing the oscillations in real and imaginary h(t)

The oscillations can be used to shift the frequency.  Note that h can be 
calculated once, then shifted and re-used over and over, the sine and cosines 
need not be recalculated.  Convolution reduces to a single set of 
multiplications and sums for each output data point.



Splitting the Space



Second region

The convolution with h(t,f1,f2,w) produces complex data.  The imaginary 
part is shown above.  



Second region in frequency

Real part of transform of convoluted data between 
32/Time and 50/time using 50-32+10 data points



Second region in frequency

Ignoring the 10, the data reduction factor is  2 1
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Real part of transform of convoluted data between 
32/Time and 50/time using 50-32+10 data points



Pulsar numbers
[i]The size of F was found by Cornish and Larson to be ~ 0.01 Hz , Thus 

there needs to be an output point every 10 seconds to follow the Doppler 
motion of B0531+21 which has a quadrupole frequency of 59.62±0.01 Hz. 

[i] Neil J. Cornish and Shane L. Larson,  “LISA data analysis: Doppler 
demodulation”, Class. Quantum Grav. 20 (2003) S163-S170 – online at 
stacks.iop.org/CQG/20/S163

Data reduction factor ~ 16384/0.02 = 819200



|h(t)| for 0.02 width signal

The time range on this plot is from –500 seconds to + 500 seconds.



Omissions
The phase will need to be monitored, if it drifts 
the signal will cancel to zero. – possibly the 
violin modes will help.

If the convolution went straight from the input data, 
noise in the region would in principle rise as T1/2

while the signal would rise as T.  

The noise is systematic and has many properties 
that identify it, an intermediate step in which 
known sources of frequencies that overlap the 
pulsar frequency are examined and removed will 
be investigated.
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