Progress on the Advanced LIGO Seismic Isolation and Alignment System

Presented by Brian Lantz for the Advanced LIGO SEI team LSC meeting, Aug. 17, 2005

BSC System for Advanced LIGO

original plot from J. Giaime

CAD drawing from ASI

Overview

Progress towards a successful BSC for Advanced LIGO

- 3 pieces of news from the ETF Tech Demo
 - I Hz isolation factor of 100 has been shown
 - I Hz performance requires improved sensor electronics
 - 10 Hz performance limited by tilt & bandwidth
- I piece of news from LASTI
 - 10 Hz pier amplification persists

ASI implementing design changes to improve 10 Hz isolation

- will give good performance for Advanced LIGO

ETF Technology Demonstrator

2 stage isolation and alignment system.

Each stage aligned and isolated in 6 DOF.

Passive isolation above I Hz horz, 3 Hz vert

Active isolation below 30 Hz

ETF: X Performance

Model of the Tech Demo

ETF: X Performance vs. model

ETF: Tilt coupling

Stage 2 horizontal motion result of tilt coupling.

- SO -

To get better horizontal performance, improve (differential) vertical isolation

ETF: Vertical Performance

LASTI: 10 Hz pier amplification

At 10 Hz, LIGO crossbeams move more than ground.

Rich Mittleman leading work at LASTI to study pier.

- is it from the stack?
- what will it look like for Ad LIGO?

LASTI: 10 Hz pier amplification

Stacks removed, amplification still present
Best guess: resonance of BSC chamber with floor, drags piers along.
Lots of work put into this by Mittleman & Mason I) Work is ongoing, 2)10 Hz is problematic

Amplification of ground motion, Y direction

New system from ASI

Predicted Performance: Z

Noise coupling to the Vertical Stage 2 witness

GOSO364 Predicted Performance w/ Pendulum

Conclusions

-Expected performance at 10 Hz not quite as good as we'd originally predicted.

- Pier amplification troublesome (opportunity) Has minor impact on system performance.

- I Hz performance looks good

-We look forward to getting the prototype into LASTI

GS-13-03 preamp

PRE-AMPLIFIER CIRCUIT

ETF: X Control

10⁻⁶

10⁻⁷

10⁻⁸

10⁻⁹

10⁻¹⁰

10⁻¹¹

10⁻¹

Magnitude (m/Hz ^{1/2})

10 Hz pier amplification

