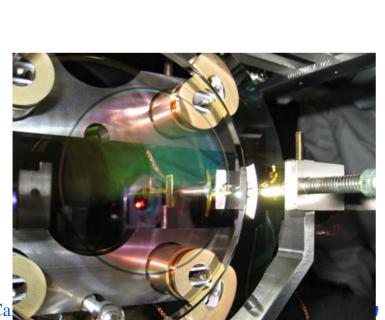


Noise Budget Development for the LIGO 40 Meter Prototype

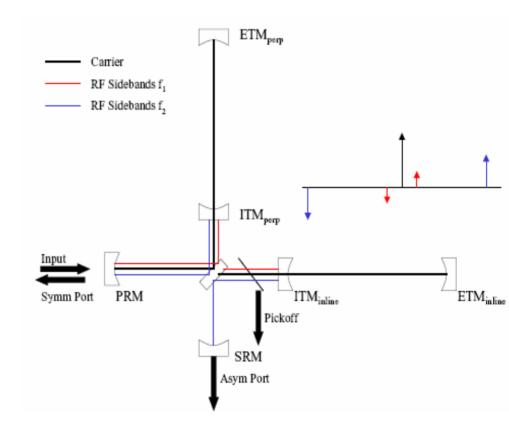
Ryan Kinney

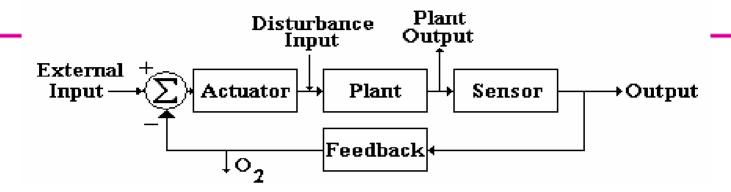
University of Missouri-Rolla, Department of Physics, 1870 Miner Circle, Rolla, MO 65409, USA



Introduction

- LIGO 40 meter prototype
- Transfer Functions
- What is a Noise Budget?
- Seismic Noise Example


Weinstein


40m Prototype

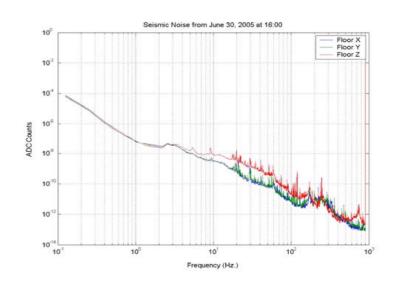
- Purpose: To test new designs and techniques to be used for Advanced LIGO.
- Basic Components:
 - Fabry-Perot cavities
 - Power Recycling
 - Mode Cleaner
 - Pre-Stabilized Laser
 - Signal Recycling**

LIGO Transfer Functions for the Non-Believer

• For linear time-invariant systems, a transfer function is a ratio of a system output given a known input (e.g. a sinusoidal wave).

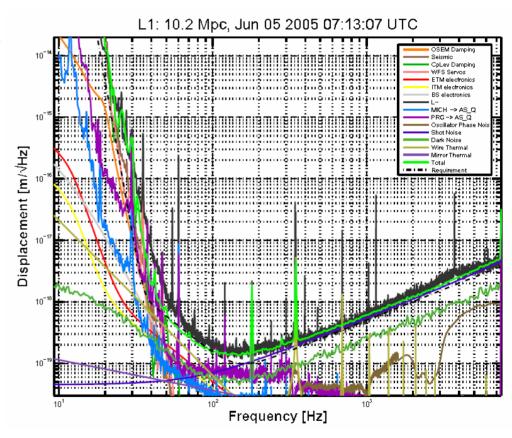
$$T(Input \Rightarrow Output) = \frac{Output}{Input}$$

An open loop transfer function, G, has the feedback disconnected while a closed loop transfer function has the feedback connected. At O₂ (a test point), The functional forms are


$$T_{ol} = APSF = G$$
 $T_{cl} = \frac{G}{1 - G}$

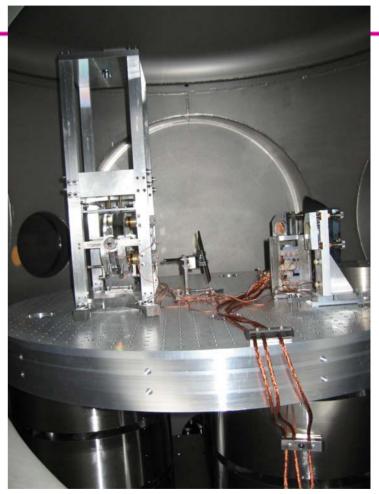
Dr. Alan Weinstein

Noise Sources


- Fundamental: Noise sources that are intrinsic to the detection method
 - Seismic
 - Shot
 - Thermal
- Technical: Noise sources that are a result of the electronics and control system
 - OSEM
 - OpLev
 - Electronics

What is a Noise Budget?

- A noise budget is simply a plot of all known sources of noise in the interferometer calibrated to show their effect on the DARM gravity wave data signal
- Shows the IFO sensitivity to GWs
- Used to track noise sources for eventual reduction


Process

- Pick Noise source
- Measure noise spectrum (power spectrum)
- Calibrate to units of meters/rtHz (calibration constants and transfer functions)
- Plot against DARM signal

Seismic Noise

- Effects all ground based interferometers
- Seismic Isolation System (passive)
 - Stacis
 - Stacks
 - Pendulum
- Measurements were taken with six orthogonally mounted Wilcoxon 731A accelerometers

Calibration

- Step 1: The accelerometers volt to g (acceleration) gain conversion
 - Wilcoxon calibrated the accelerometer to output 10 V/g for a gain of 1 and 1000 V/g for a gain of 100
 - The noise budget seismic measurements have a gain of 100
- Now, the signal has units of Volts per g or Volts per acceleration

Calibration

- Step 2: Get position from acceleration
 - The optic is modeled as a simple pendulum
 - From basic mechanics, divide acceleration by ω^2 to get position (magnitude only)

$$y(t) = A\sin(\omega t)$$

$$y(t) = -\omega^2 A\sin(\omega t)$$

$$y(t) = \frac{\mathcal{Y}(t)}{-\omega^2}$$

The signal has units of meter/Volt

Calibration

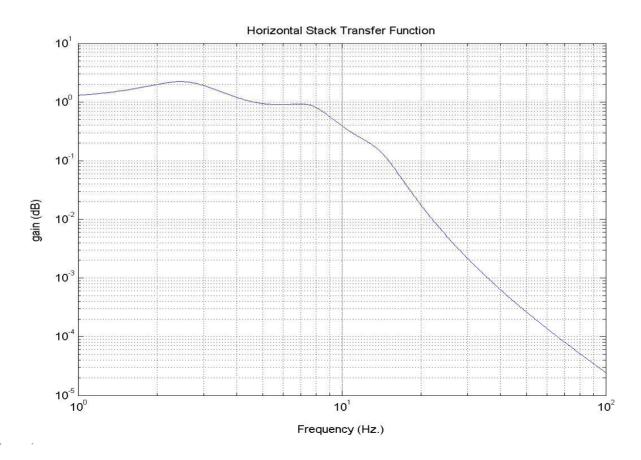
- The 40m has a digital control and readout system, therefore all data must be converted from an analog voltage to optic position information
- Step 3: ADC voltage resolution (Volt/count)
 - The ICS110B has a range of ± 2 V and a 16 bit resolution
 - The conversion factor from counts back to volts is

$$V_R = \frac{range}{resolution} = 61.035 \frac{\mu V}{count}$$

 The signal has correct units (meters/count), but does not produce the correct response to seismic input

Caltech, Aug. 19, 2005

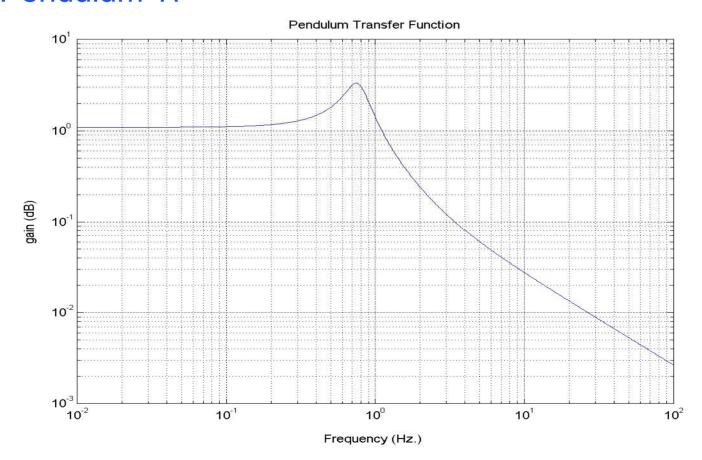
Dr. Alan Weinstein


Seismic Isolation Transfer Function

- Step 4: Multiply the calibrated signal by the seismic isolation transfer function to get the correct response of the optic to seismic motion
- This transfer function incorporates the stacks and the pendulum, but leaves out the stacis units passive contribution to noise damping
- Horizontal Stack transfer function
 - Resonant at 3, 8.25, and 15 Hz
- Pendulum transfer function
 - Resonant at 0.8 Hz.

Seismic Isolation Transfer Function

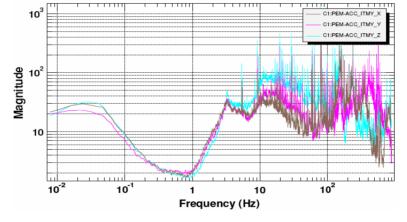
Horizontal Stack TF

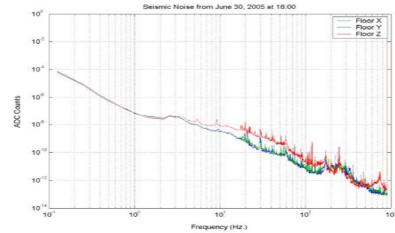


Caltech, Au

Seismic Isolation Transfer Function

Pendulum TF

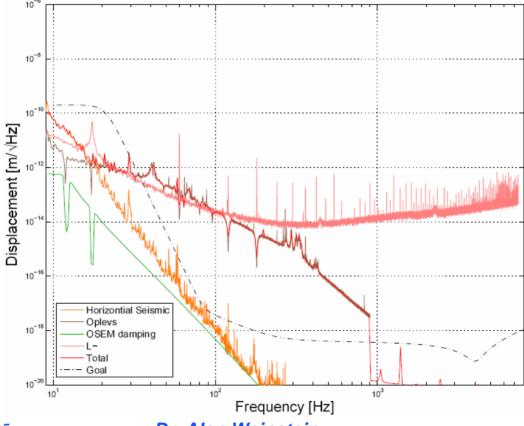

Seismic Budget


 To get the seismic noise budget, multiply the noise spectrum from the accelerometers by the calibration constants and the

transfer functions

From this

To this


Noise Budget

The preliminary noise budget for the 40m

Noise sources budgeted here: Seismic, OSEMs

Soon to be budgeted: Shot, Dark, Wire and Mirror Thermal,

OpLevs

Caltech, Aug. 19, 2005

Dr. Alan Weinstein

Future Work

- Complete the noise budget by including more noise sources
- Known noise sources: Wire Thermal, Mirror Thermal, Shot, Dark, Electronic, Intensity, Frequency, MICH, PRC, SRC
- Unknown sources: Find and budget
- Use the budget to improve the 40m IFO performance

Recognition

I would like to thank

- Dr. Alan Weinstein
- Dr. Rana Adhikari
- Dr. David Blair
- Dr. Vuk Mandic
- Dr. Osamu Miyakawa
- Dr. Monica Varella

- Ben Abbott
- Dan Busby
- Jay Heefner
- Steve Vass
- Rob Ward
- National Science Foundation
- California Institute of Technology