Targeted Searches using Q Pipeline

Mentor: Shourov Chatterji Sahand Hormoz

August 18, 2005

LIGO SURF Presentation

1

LIGO-G050469-00-R

Outline

- Overview: Burst GW Sources
- Q Transform
- Motivation
- Coherent Targeted Searches
- Consistency Checks
- Examples
- Conclusions

Bursts

- Unknown or crudely modeled
- "Expectations":
 - Duration: ~1-100 ms
 - Frequency: > 500 Hz
- Searching:

- Matched Filter: Project data onto known waveform
- Cross-correlation: Project data stream from one detector onto another
- Time-Frequency: Project data steam onto a basis of waveforms designed to cover the targeted signal space

Q Transform

- Multi-resolution basis
- Time, frequency, Q
- $Q = f/\Delta f$
- Over-complete basis
- Purpose is detection not reconstruction
 - Logarithmic spacing Q
 - Logarithmic spacing f
 - Linear spacing in t

Q Transform

- Simulated Data
- SG235 + simulated noise
- Signal Q = 16
- Problem: Burst GW and noise can look alike
- Vetoing techniques crucial

Q = 4.5

Multiple Detectors

- Coherent Sum
- Three or more needed (Gursel, Tinto, 1989)
- Achieve higher SNR using HL network
- Distinguish GW from Glitches using H1 and H2

Coherent Sum

• Single detector response of form

 $h(t) = F + (\theta, \phi)h + (t) + Fx(\theta, \phi)hx(t) + \eta$

- Find set of scalar coefficients that would maximize SNR
- How much a priori information is required?

Coherent Sum

- 1) Time Shifts: GR propagates at speed c.
- 2) Amplitude Corrections: Accounts for different detector responses
- Both time shifts and detector response are a function of propagation direction
- Then for a given sky location carry out the calculations
- Sylvestre Algorithm

Time Shifts

Amplitude Scaling

- Scale each input by an unknown coefficient
- Calculate the signal and noise power of combined response
- Using the Lagrangian method maximize for SNR
- Eigenvalue problem, easily solved
- Required information about wave:
 - 1) h+. hx Inner product of polarizations
 - -2) |h+|/|hx| Ratio of power

LIGO SURF Presentation

Parameter Space

Graph of -1*log(1-MaxZ) over Lambda Parameter Space

Region of Max SNR

Parameter Space

Region of Max SNR

- Polarization changed
- Redefinition of parameters
- However, search over the space yields same max SNR value

All Sky Searches

- Origin unknown
- Conduct searches over all sky

Consistency Checks

- Impossible to distinguish between GW and Glitches with two detectors (HL)
- H1 and H2 can be used for consistency checks
- Subtract out signal if true GW

H1

H2

15

Q Statistics, GW

- H1 H2 Consistency Check
- After subtraction
 Gaussian distribution
 expected in each
 component of
 coefficient
- Lilliefor test used
- Hypothesis test on whether GW or Glitch

Q Statistics, Glitch

- Simulated Glitch
- Subtraction not possible (complex coefficients)
- Reflected in the statistics of the difference transform

LIGO SURF Presentation

Max 5

Conclusions

- Coherent Searches
- Coherent Sum: Improvement in SNR
- Consistency Checks using H1 and H2
- Future Work: Special class of waves Q Difference to distinguish between glitches and GW in HL network
- Run on real data