Thermal Compensation:

The GEO and LIGO experience and requirements for advanced detectors

Gregory HarryLIGO/MIT

On behalf of the LIGO Science Collaboration

22 September 2005 ESF PESC Exploratory Workshop - Perugia Italy LIGO-G050476-00-I

Ryan Lawrence's Thesis

- Two heating techniques
 - Ring heater
 - Scanning CO₂ laser
- Ring heater for radially symmetric absorption
- Scanning laser for inhomogeneous absorption
 - Point absorbers (dust)
 - Complicated absorption patterns (sapphire)
- Two substrate materials
 - Silica
 - Sapphire
- Excellent results from both techniques on both materials

sensor heating

CONTROLLER

Ryan Lawrence's Thesis: Ring Heater

Ring heater system

- Heat from incandescent source
- Shield keeps heat at edge of optic to avoid radial gradients
- Excellent correction of radially symmetric thermal lens
- Less efficient use of heat than laser

Ryan Lawrence's Thesis: Scanning CO₂ Laser

- Galvos used to control beam
- Shack-Hartmann sensor used to readout transmitted wave
- Feedback from sensor to galvos to minimize thermal lens

Reduction in thermal lens from point absorber

Sapphire thermo-elastic properties

Thermo-Optic Coeff: dn/dT = 7.2 ppm/K

Thermal Expansion: $\alpha_0 = 5.6 \text{ ppm/K}$

 $\alpha_e = 5.1 \text{ ppm/K}$

Thermal Conductivity: $\kappa_0 = 39 \text{ W/m/K}$

 $\kappa_e = 36 \text{ W/m/K}$

Emissivity: $\varepsilon = 0.89$

Initial LIGO: Excess Absorption at Hanford

- Input optics curved to match recycling mirror curvature at 8 W
 - Point design assumes a value for absorption
- Found best matching at 2.5 W
 - Additional absorption causes excess thermal lensing
- Excess absorption has to be in recycling cavity optic
 - Input mirrors or beamsplitter

Other interferometers (2 K at Hanford and 4 K at Livingston) found to have much less absorption than expected

Sideband Recycling Gain LIGO 4K Hanford IFO

Initial LIGO: Thermal Compensation Design

- 8 W CO₂ laser directly projected onto mirrors
 - Ring heater not used to minimize installation time in vacuum
 - Scanning laser not used to avoid Shack-Hartmann sensors and radiation pressure issues
- Different masks used to compensate for high or low absorption
- Laser power controlled by acousto-optic modulator (H2) and rotating polarization plate (H1, L1)
- Power controlled by feedback from IFO channels

Initial LIGO: Effects of Thermal Compensation

- Resolution 6 mm, limited by ZnSe window aperture
- Underheat mask Gaussian profile same as main beam
- Overheat mask Annulus with radii optimized
- Poor illumination at 3 4.6 W from high RF power in AOM
 - Switch to polarizer as control mechanism

Initial LIGO: Noise from Thermal Compensation

- Improvement in sideband balance reduces sensitivity to sideband phase noise
 - Uncovers shot noise
- High frequency noise now at design level of shot noise

Green: without thermal compensation Red: with thermal compensation

- Direct noise from thermal deformation of high reflecting surface
 - Annulus heating lower by factor of 10

Initial LIGO: Excess Absorption at Hanford

- Three techniques used to determine source of excess absorption
 - Change in g factor
 - Thermal compensation power
 - Change in spot size
- Fairly consistent result (assuming absorption in HR coating)
 - ITMx 26 ppm
 - IMTy 14 ppm
 - Design 1 ppm
- Resulting changes
 - ITMx replaced
 - ITMy drag wiped in situ

LIGO Initial LIGO: Absorption . improvement at Hanford®

- ITMx replaced with spare optic
- ITMy drag wiped in place
- Both optics (ITMx and ITMy) show improved absorption
 - Both < 3 ppm

- Power 6.8 W mode cleaner
- Shot noise at design level
- 11 Mpc binary neutron star inspiral range

Initial LIGO: Bench Tests of H1:ITMx

- H1:ITMx shipped to Caltech immediately after removal
- Absorption measured using photothermal common-path interferometry
- Background < 1 ppm
- Significant outliers with absorption > 40 ppm

Dust source of absorption?

- Soot from brush fire in 2000?
- Attracted by charged surface?
- Insufficient cleaning and handling procedures?

GEO: Power and locking problem

- Poor contrast at dark port
- Mismatch in radii of curvature of end folding mirrors

Error signal for locking and power level near design radius

Error signal for locking and power level with observed radii

GEO: Control of optic with ring heater

- Ring heater installed behind east end folding mirror
- Thermal expansion changes radius of curvature
- Radius
 - East 687 m -> 666 m
 - North 660 m

- Increase in heater power changes contrast defect
- Slight astigmatism causes horizontal and vertical curvature match to be at different powers
- 71 W best compromise

Advanced: Upgrades and challenges

- Initial LIGO compensation effective at 100 mW absorbed
- Advanced LIGO expected to have 350 mW absorbed
- Cleanliness and handling will be crucial
 - Need to keep absorption down
- Potential improvements for advanced detectors
 - **Graded absorption masks**
 - Scanning laser system
 - Compensation plate in recycling cavity
 - **Graded absorbing AR coating**
 - DC readout, reducing requirements on RF sidebands

Challenges

- **Greater sensitivity**
- New materials sapphire ~ 20 ppm/cm absorption
- Compensation of arm cavities
- Inhomogeneous absorption
- Noise from CO₂ laser

Advanced: Losses in signal recycling cavity

- Scatter in signal recycling cavity up convert gravitywave sidebands
- Sets the most severe limit on thermal aberrations
 - ~ 0.1 % loss from TEM00 mode
 - ~ 5% loss in sensitivity

- Low frequency sensitivity set more by thermal noise
- Less effect from thermal aberrations

Advanced: Lasers and ring heaters

- Ring heaters simplest compensation system
 - Adds a lot of unnecessary heat
 - Could cause thermal expansion of other parts
- Scanning laser system causes noise
 - Jumps in location cause step function changes in thermal expansion
 - Harmonics of jump frequency could be in-band
 - Could require feedback with Hartmann sensors or similar
- Staring laser system works on initial LIGO
 - Could require unique masks for each optic
 - Unique masks could be inappropriate as system is heating up
 - CO₂ laser noise still a problem

Contacts

Initial LIGO Thermal Compensation

- Dave Ottaway ottaway@ ligo.mit.edu
- Phil Willems willems@ ligo.caltech.edu

Hanford Optic

- Dave Ottaway ottaway@ ligo.mit.edu
- Garilynn Billingsley billingsley_g@ ligo.caltech.edu
- Bill Kells kells@ ligo.caltech.edu
- Liyuan Zhang zhang_l@ ligo.caltech.edu

GEO Thermal Compensation

- Stefan Hild -stefan.hild@ aei.mpg.de
- Harald Lück harald.lueck@ aei.mpg.de

Advanced LIGO Plans

- Dave Ottaway ottwaway@ ligo.mit.edu
- Phil Willems willems@ ligo.caltech.edu