Improving Searches for Gravitational Waves using Signal Isolation Tests

Sebastian Cassel August 18 2005

Supervisor: Peter Shawhan

LIGO-G050488-00-R

 Method of Detecting Gravitational Waves (GWs) from Binary Inspiral Sources

- Method of Detecting Gravitational Waves (GWs) from Binary Inspiral Sources
- Characteristics of True and Noise-Induced Signals

- Method of Detecting Gravitational Waves (GWs) from Binary Inspiral Sources
- Characteristics of True and Noise-Induced Signals
- Proposal of Discriminating Test

- Method of Detecting Gravitational Waves (GWs) from Binary Inspiral Sources
- Characteristics of True and Noise-Induced Signals
- Proposal of Discriminating Test
- Application of Test

- Method of Detecting Gravitational Waves (GWs) from Binary Inspiral Sources
- Characteristics of True and Noise-Induced Signals
- Proposal of Discriminating Test
- Application of Test
- Conclusions

- Method of Detecting Gravitational Waves (GWs) from Binary Inspiral Sources
- Characteristics of True and Noise-Induced Signals
- Proposal of Discriminating Test
- Application of Test
- Conclusions

Method of Detecting GWs from Binary Inspiral Sources

Knowledge of Waveform

I. B. Allen, Phys Rev **D71**, 62001 (2005)

2. C. M. Will, A. G. Wiseman, Phys Rev **D54**, 4813 (1996)

Method of Detecting GWs from Binary Inspiral Sources

- Knowledge of Waveform
- Matched Filtering

$$\tilde{s}(f) \equiv \int e^{-2\pi i f t} s(t) dt$$

$$z(t) \equiv \int \tilde{s}(f) \cdot \frac{\tilde{Q}^*(f)}{S_n(f)} df$$

I. B. Allen, Phys Rev **D71**, 62001 (2005) 2. C. M. Will, A. G. Wiseman, Phys Rev **D54**, 4813 (1996)

Method of Detecting GWs from Binary Inspiral Sources

I. B. Allen, Phys Rev **D71**, 62001 (2005)

Method of Detecting GWs from Binary Inspiral Sources

I. B. Allen, Phys Rev **D71**, 62001 (2005)

- Method of Detecting Gravitational Waves (GWs) from Binary Inspiral Sources
- Characteristics of True and Noise-Induced Signals
- Proposal of Discriminating Test
- Application of Test
- Conclusions

Signal-to-Noise Ratio Time Series for Injected Signal (True GW)

Signal-to-Noise Ratio Time Series for Injected Signal (True GW)

Signal-to-Noise Ratio Time Series for Injected Signal (True GW)

r² Time Series for Injected Signal (True GW)

r² Time Series for Injected Signal (True GW)

r² Time Series for Injected Signal (True GW)

1.5

1.5

2

2

- Method of Detecting Gravitational Waves (GWs) from Binary Inspiral Sources
- Characteristics of True and Noise-Induced Signals
- Proposal of Discriminating Test
- Application of Test
- Conclusions

- Method of Detecting Gravitational Waves (GWs) from Binary Inspiral Sources
- Characteristics of True and Noise-Induced Signals
- Proposal of Discriminating Test
- Application of Test
- Conclusions

Determining the r² Offset

Determining the r² Offset

Height of r² Side Peaks

Height of r² Side Peaks

Average r² during one sec Interval

Average r² during one sec Interval

SNR Test (threshold = 3.0)

SNR Test (threshold = 4.5)

SNR Test (threshold = 4.5)

Modified r² Test *

*Andres Rodriguez, Louisiana State University

- Method of Detecting Gravitational Waves (GWs) from Binary Inspiral Sources
- Characteristics of True and Noise-Induced Signals
- Proposal of Discriminating Test
- Application of Test
- Conclusions