

Test Mass Suspensions for AIGO

Ben Lee

The University of Western Australia

1 LIGO-G050545-00-Z

Introduction

- AIGO
- Thermal noise in interferometers.
- Reducing the thermal noise: what we know so far.
- Suspensions for AIGO.
- Removable modular suspensions.
- Reducing violin mode Q factors.

Suspension Thermal Noise

Australia-Italy Workshop 3rd-6th Oct 2005

Ben Lee

Low Loss Materials

From the dissipation dilution theorm:

$$x^{2}(\omega) = 4k_{B}T\sum \frac{\Psi_{n}^{2}(L)\phi_{n}\omega_{n}^{2}}{\omega\left(\left(\omega_{n}^{2}-\omega^{2}\right)^{2}+\phi_{n}(\omega)\omega_{n}^{4}\right)}$$

Thus, materials with low Φ are better.

Fused Silica: **Φ~3×10**⁻⁸ [1] Silicon: **Φ~2.8×10**⁻⁸ [2] Sapphire: Φ~3.7×10-9 [3]

There is much more to consider....**Thermoelastic loss** References: 1. A.M. Gretarsson, G.M. Harry. Rev. Sci. Instrum. 70 (1999) 4081 2. J. Ferreirinho in: D.G.Blair (Ed), The Detection of Gravitational Waves, Cambridge University Press, Cambridge, 1991. S. Rowan, et. al. Phys. Lett. A. 5 (2000) 265 3. 5

Thermoelastic Loss

Thermoelastic loss presents a significant frequency dependance to the loss value, Φ .

2005

Fibers vs Ribbons.

Dissipation dilution factor:

•The ratio of restoring force supplied by **bending elasticity** to the restoring force supplied by **tension**.

•This phenomena has a significant effect on pendulum mode and violin mode Q factors.

The effective loss factor

$$\Phi = \frac{1}{2} \sqrt{\frac{EI}{mgL^2}} \phi$$

This value can be lower for ribbons compared to fibres with similar strength.

GA

AIGO suspension

AIGO

Holes in the test mass

AIGO

Holes in the test mass

Reducing Violin Mode Qs

AIGO

It has been reported by Goßler et. al. [1] the need to reduce the Q factor of the fundamental and first harmonic violin mode.

The purpose is to prevent interference with interferometer length control servo.

This is achieved by adding lossy coatings.

Reference: 1. Class. Quantum Grav **21** (2004) S923-S933

Reducing Violin Modes

AIGO

The Orthogonal Ribbon can reduce violin modes and Q factors.

Reducing Violin Modes

The violin modes for the orthogonal ribbon can be calculated by

Test Mass

Suspension violin mode dilution factors						
		fi	f_2	fз	f_4	fъ
Normal Ribbon	x	$5.9 imes10^{-3}$	$6.1 imes10^{-3}$	6.5×10^{-3}	ל.1 $ imes 10^{-3}$	7.8 $ imes$ 10 ⁻³
	у	0.56	0.71	0.82	0.87	0.90
Orthogonal Ribbon	x	0.23	0.54	0.72	0.82	0.86
	у	$6.0 imes 10^{-3}$	6.2×10^{-3}	$6.6 imes10^{-3}$	$7.2 imes 10^{-3}$	$7.8 imes10^{-3}$

Conclusion

- Removable modular suspension can be achieved with only a slight increase in test mass thermal noise.
- Lowering all the violin mode Q factors can be achieved with an orthogonal ribbon.
- The orthogonal ribbon has little effect on pendulum mode thermal noise.
- AIGO facility can be used to test the practicality of the suspensions presented.

AIGO