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1. Introduction

B Sengitivity of GW detectors will be limited by quantum noise

» Shot noise
— Spectral density of the shot noise o
10
1/P, ol
— P: laser power 10T
— The shot noise arises from uncertainty 10'14 ?

due to quantum mechanical fluctuationsin - 10% 1
the number of photonsin the interferometer omtpu 6]
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V acuum fluctuations

In the next generation, the sensitivity of the interferometer will
be limited by the quantum noise at most of frequencies

» Vacuum fluctuations entering an anti-symmetric port of conventional
Interferometer I
— EXxpression of the vacuum fluctuations
using two quadrature amplitudes a,(Q2 ) and
& (Q ) which are made by the combination of
annihilation operatorsa, (w y+ Q) E &
Coherent state light
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3 Vacuum fluctuations
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Ponderomotive squeezing

B The vacuum fluctuations is ponderomotively squeezed by
back action of mirror motion due to fluctuating radiation

pressure on test masses

I

Coherent state light
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V acuum fluctuations 1'
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Ponderomotlvely squeezed It
vacuum fluctuations —— 4

Mirror motion
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Homodyne detection

®  Using conventional readout scheme, in case of detecting the
ponderomotively vacuum fluctuations, the sengitivity islimited by the SQL

B However, by using homodyne detection that is one of the quantum
nondemolition devices, the sensitivity will be able to beat the SQL

» Optimization of the homodyne phase make it the best signal-to-noise ratio
O ]

Gravitational-wave signal

.
Coherent state light
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2. Interferometer to generate ponderomotively
sgueezed vacuum fluctuations

®  We calculate generation of the ponderomotive sgueezing using
Michelson interferometer and Fabry-Perot Michel son interferometer

» Inthe calculation conditionsis that:

— Parameters
e Laser power |,=1W
e Q Phase modulation frequency due to the mirror motion
o Q=1kHz
— 0 %
e Yy : cavity pole
e Arm length=10cm
— The sensitivity assumes to be limited by only the quantum noise

— Lossiszero
e End mirror reflectivity: 1
— The sengitivity achieves the SQL, then beat the SQL by extracting the ponderomotive
squeezing at the SQL
e The homodyne phase is independent of frequency

» Reference: H.JKimble et a. Phys.Rev.D 65, 022002 (2002)
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Generation of ponderomotive squeezing
using Michelson interferometer

B |n case of measuring the output quadrature field by means of the
conventional readout scheme,
» The noise spectral density: s, Isan (%MI | fcm)
» where iy, AHow M

r_r,-r.r-Eg‘lrE ' ey M +m
— The sengitivity achievesthe SQL, whereK,,, =1

e m.  reduced mass, My BSmass, o, laser angular frequency

E how much mass of the end mirror is needed to achieve the SQL?

» Theend mirror mass: 1 ng
e BSmass 5009
» The reduced mass: m, — ——=
— Experimentally generation of the ponderomotive squeezing is very difficult

» rnr IO
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Generation of ponderomotive squeezing using
Fabry-Perot Michelson interferometer

B |n case of measuring the output quadrature field by means of
the conventional readout scheme,

: . he |
» The noise spectral density: s —% (— 1 Kera
» where Mowo [ TeF 2 Mm
Krpmr = —— (—-f?r"l — ) T = T
My TF Tebh I'F ) ! 112
- mg  F?

e Thesensitivity achievesthe SQL, where K, =1
e m  reduced mass M;: front mirror mass
e 1. amplitudereflectivity of front mirror, T intensity transitivity of end mirror
— Making finesses 7 ten times is the same effect as making end mass m; 100 times
e ¥ 10000- m. 5009
e ¥ 1000- m. 59
e ¥ 100- m. 50mg
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Experimental parameter

B Discussion of experimental parameter
» The sensitivity achievesthe SQL at Q 4, = 1 kHz

» Thenoise spectral density: ./ ,
P y Sh g?L (J;- | "‘LFPMI)
< “FPMI
— Finesses ¥ - 1/10 times and mass m - 1/100 times does not change the frequency Q
e Radiation pressurenoise  1/m 16
e Shotnoise 1/F 10 =
: o — #=10000, mE=80g ||
— By making the sensitivity worse, [— adiation | — #=1000, mE=800mg||
achievement of the SQL is more possible 047 _“” = —
E  Noises other than the quantum
. ~N
noise T | T~ N[0 T
. . = 10
» Suspension thermal noise =
e
becomes worse §
— Roughly  1/(m)¥2 109 3
10 I t t | R B t t 1
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Beat the SQL

In case of measuring the output quadrature field by homodyne

detection,

L : hg _ o
» The sensitivity is obtained by s =2 (11 (coty— Keen)®)

» At the SQL, the homodyne phase is optimized by

— Ponderomotive squeezing of 4dB Q g5 =1kHz
e Squeezing factor arcsinh(Kqy,,, /2) 1075

1l

~|l— #=1000, mE=800mg :
Squeezing detection by HD
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3. Summary

® By extraction of the ponderomotive squeezing at the SQL, the
sensitivity will beat the SQL
» Discussion of interferometer to generate the ponderomotive squeezing

— Michelson interferometer and Fabry-Perot Michelson interferometer
e Lossiszero
e The sengitivity assumes to be limited by only the quantum noise

— Finesses ¥ - 10 timesis equivalent to the mass m - 100 times

» Experimental parameter

— The sensitivity achievesthe SQL at Q g5 =1kHz
e Finesses ¥ - 1/10 times and mass m - 1/100 times does not change the frequency Q
o AttheSQL, Ky, =1
— By making the sensitivity worse, achievement of the SQL is more possible
» At the SQL, the homodyne phase is optimized by
— Ponderomotive squeezingof 4dB  Q g5 =1kHz

— Homodyne phasen =45°
e m_=800mg ¥=1000
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4. Future plan

¥ Design of end mirrors
» Design of suspension
» Thermal noise

®  Photo detection
» Homodyne detection or DC readout
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