



# Status and Recent Results from the LIGO Experiment

Brian O'Reilly

California Institute of Technology

LIGO Livingston Observatory

Vanderbilt University Physics Department Colloquium

October 20 2005



## **Summer 2005**





### Outline

- What is Gravity.
- GW Interferometers.
- Performance.
- Gravitational Wave Sources.
- Searches using the S2 data.
- Advanced LIGO and Outlook for the future.



#### What is Gravity?



# Bart uv

#### Einstein

Gravitational Radiation traveling at the speed of light

**Newton** 

Action at a distance



- Gravitational Waves = "Ripples in space-time"
- Two transverse polarizations <u>quadrupolar</u>: + and x





#### **Optical Configuration**





#### Vacuum "Envelope"



October 20 2005



#### **Optic Suspension**



- Magnets and coils control position and angle of mirrors
- $\bullet$  Suspension provides 1/f² attenuation above the pendulum resonance ~0.75 Hz.
- Suspension is critical to controlling thermal noise.





Caltech

 Adapted from "The Blue Marble: Land Surface, Ocean Co
NASA Goddard Space Flight Center Image by Colo Stock Simmon (ocean color, compositing, 3D globes, animation). In Data Support Team; MODIS Atmosphere Group; MODIS Oc (topography); USGS Terrestrial Remote Sensing Flagstaff F (city lights).





- Worldwide Network:
  - We are already working with TAMA and GEO and beginning to work with VIRGO.





#### **Actual Noise Budget**









October 20 2005



#### **Gravitational Wave Sources**







#### **Emission of gravitational waves**







### "Chirps"



October 20 2005



# The LIGO Scientific Collaboration

UTB TSC T













Universität Hannover

MICHIGAN



- 35 Institutions plus the LIGO laboratory.
- International participation from Australia, Germany, India, Japan, Russia, Spain and the U.K.
- Consists of technical and data analysis groups tasked with detector characterization, Advanced LIGO R&D and the search for Gravitational Waves.

PENNSTATE

THE UNIVERSITY OF

WESTERN AUSTRALI

ИПФ

NORTHWESTERN

UNIVERSITY





#### **BNS Rate Predictions**

- Initial LIGO (20 Mpc):
  - Peak: 35/(10<sup>3</sup> yr)
  - 95% CL: 10-120/(10<sup>3</sup> yr)
- Advanced LIGO (350 Mpc)
  - Peak: 175 event/yr
  - 95% CL: 35-630 events/yr
- But small statistics, based on three known relativistic binaries.

#### V. Kalogera et al.





#### Short GRBs

#### GRB050709





**GRB050509B** 



- HST
  - 050509B Associated with non-star forming elliptical galaxy.
  - 050709 Associated with younger star-forming galaxy.
  - No evidence of associated supernovae.
  - Two other events GRB050724 and GRB050813 have similar redshifts and peak luminosities.
  - Perhaps arising from NS-NS or NS-BH merger?
  - Ramifications for LIGO as yet unclear.

October 20 2005









## $\chi^2$ Test

- Divide template into p frequency bands, each of which contributes 1/p to the total SNR.
- Construct χ<sup>2</sup> statistic comparing the magnitude and phase of SNR accumulated in each band to the expected amount.
- In S2 used *p* = 15
- $\chi^2$  threshold determined from playground data.



B. Allen, Phys Rev. D**71**, 062001 (2005)

October 20 2005



#### S2 BNS search



False alarm coincident triggers, and simulated injections

• Used a combined SNR:

$$\sqrt{\rho_L^2 + \frac{\rho_H^2}{4}}$$



FIG. 8: The number of triggers per S2 above combined SNR  $\rho^*$ .

• Modified clustering technique, instead of using max SNR, used *best-fit clustering:* 

$$\frac{\chi_H^2}{p+\delta^2\rho_H^2} + \frac{\chi_L^2}{p+\delta^2\rho_L^2}$$

October 20 2005

G050554-00-ZG

25



#### S2 Result

• Loudest event statistic:

$$R < R_{90\%} = \frac{2.303 + \ln P_b}{TN_G(\rho_{\max})}$$

• A frequentist upper limit.  $\rho_{max}$  is the maximum observed SNR,  $P_b$  is the probability that all background triggers have SNR <  $\rho^*$ , conservatively taken = 1, T is the total observation time (339 h) and  $N_G(\rho_{max})$  is the total number of MWEG to which the search is sensitive.

$$R_{90\%} = 47 \text{ y}^{-1} \text{MWEG}^{-1}$$



#### S2 BBH Search

- Component mass 3-20 M<sub>sol</sub>
  - f of ISCO: 733 110 Hz
  - Time in detection band: 0.607 0.013 seconds
  - $-\chi^2$  test is not effective
- Use phenomenological family of waveforms
  - A. Buonanno, Y. Chen and M. Vallisneri, Phys. Rev. D 67,024016 (2003)
  - Good match with models, efficient at recovering injections.
  - Not good for parameter estimation.
  - Restricting template bank can lead to atypical waveforms.
    - On average 958 templates per 2048 s of L1 data.



#### S2 BBH Results



October 20 2005



#### **Search Targets**



October 20 2005



#### **Burst Search**

- Threefold coincidence for reduction of accidentals
- A "blind" search tuned on a playground, O(10%) of full data
- Determine background by forming time-delayed coincidences
- Measure detector and algorithm response via software and hardware injections
  - Establish efficiency as function of signal strength
  - Quantify accuracy of burst parameter estimation
  - Use ad hoc or astrophysically motivated waveforms





## WaveBurst: Candidate Events Generation

- Excess power in wavelet time-frequency plane.
  - Black pixels



Repeat on 3 pairs, to obtain events from 3 interferometers and their significance.. Threshold on combined significance of triple coincidence events. *Ref: Class. Quantum Grav. 21 (2004) S1819* 

# Waveform Consistency Test

Process pairs of interferometers (whitened data, 100-2000 Hz)

What is the probability that the 2 data sequences are un-correlated ?

*r*-statistic: 
$$\mathbf{r}_{k} = \frac{\sum_{i} (\mathbf{x}_{i} - \overline{\mathbf{x}})(\mathbf{y}_{i+k} - \overline{\mathbf{y}})}{\sqrt{\sum_{i} (\mathbf{x}_{i} - \overline{\mathbf{x}})^{2}} \sqrt{\sum_{i} (\mathbf{y}_{i+k} - \overline{\mathbf{y}})^{2}}}$$

Significance of nullhypothesis:

$$S = \operatorname{erfc}\left(\sqrt{r^2 \frac{N}{2}}\right)$$

The incident GW direction is unknown

 $\rightarrow$  allow time delay ( $\Delta t$ ) between the two data series

$$C_{M} = \max_{\Delta t} (-\log_{10} S(\Delta t))$$

 $\Gamma = \max(C_M^{L1H1} + C_M^{L1H2} + C_M^{H1H2})/3$ 

Combine IFO pairs and search possible signal duration to maximize the final statistic  $\Gamma$ 

## Detection Efficiency Studies

- Measure test waveform efficiencies vs. signal strength  $h_{rss} = \sqrt{\int |h(t)|^2 dt}$ 
  - Sine-Gaussians, Gaussians
  - core collapse supernovae from three models (ZM,DFM,OBLW)
  - BBH merger (and ringdown) waveforms (Lazarus project)
- Source sky coordinates and polarizations were taken randomly; fixed inclination taken for SN,BBH
- Software injections: signals added to digitized interferometer output
- Hardware injections: signals added to length servo signal



October 20 2005



#### Upper Limit on Rate of Detectable Bursts

- The blind procedure gives one candidate
  - Event immediately found to be correlated with airplane over-flight at Hanford.
  - Acoustic noise detected in microphones and known couplings account for Hanford burst triggers (solved before the S3 run)
- Background estimate is 0.05



Rate upper limit = 0.26/day (1.6/day in S1)





- S2 search detects less than 0.26 events/day at the 90% conf. level
- Divide by the efficiency curve for a particular waveform to get rate vs strength exclusion region



#### LIGO-TAMA search

- LIGO TAMA S2/DT8 joint burst search
  - High-frequency search uses the minimum of noise envelope: [700,2000]Hz
  - Complementary to the LIGO-only S2 search [100,1100]Hz
  - Uses similar overall methodology
- Maximize observation time
  - 19.7 days of x3/x4 coincidence observation
  - 6.9 days of x4 coincidence observation
- No gravitational wave bursts found corresponding to a 90% upper limit of 0.12 events/day
- Sine-Gaussian simulations (with sky & polarization averaging) indicate a 50% detection efficiency at 2x10<sup>-19</sup> Hz<sup>-1/2</sup>

October 20 2005



#### **Detection efficiency**



#### S1 Physics Papers

- First Upper Limits from LIGO on GW Bursts, B. Abbott et al. (LSC), Phys. Rev. D 69 (2004) 102001
- Setting Upper Limits on the Strength of Periodic GW from PSR J1939 + 2134 Using the First Science Data from the GEO600 and LIGO Detectors, B. Abbott et al. (LSC), Phys. Rev. D 69 (2004) 082004
- Analysis of LIGO Data for GW from Binary Neutron Stars, B. Abbott et al. (LSC), Phys. Rev. D 69 (2004) 122001
- Analysis of LIGO Data for Stochastic GW, B. Abbott et al. (LSC), Phys. Rev. D 69 (2004) 122004



#### S2 Physics Papers

- A Search for Gravitational Waves Associated with the Gamma Ray Burst GRB030329 Using the LIGO Detectors, B. Abbott et al. (LSC), Phys. Rev. D 72, 042002 (2005)
- Upper Limits on Gravitational Wave Bursts in LIGO's Second Science Run, B. Abbott et al. (LSC), Phys. Rev. D 72, 062001 (2005)
- Upper Limits from the LIGO and TAMA Detectors on the Rate of Gravitational-Wave Bursts, B. Abbott et al. (LSC), Submitted to Phys. Rev. D



### S2 Physics Papers cont.

- Search for gravitational waves from galactic and extra-galactic binary neutron stars, B. Abbott et al. (LSC), To appear in Phys. Rev. D
- Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo, B. Abbott et al. (LSC), To appear in Phys. Rev. D
- Search for gravitational waves from binary black hole inspirals in LIGO data, B. Abbott et al. (LSC), Submitted to Phys. Rev. D
- Joint Search for Gravitational Waves from Inspiralling Neutron Star Binaries in LIGO and TAMA300 data, in progress



#### S2 Physics Papers cont.

- Limits on gravitational wave emission from selected pulsars using LIGO data, B. Abbott et al. (LSC), Phys. Rev. Lett. 94, 181103 (2005)
- First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform, B. Abbott et al. (LSC), Submitted to Phys. Rev. D

#### **S3 Physics Papers**

 Upper Limits on a Stochastic Background of Gravitational Waves, B. Abbott et al. (LSC), To appear in Phys. Rev. Lett.





October 20 2005



#### Outlook

- The fifth science run is scheduled to begin next month.
- Plan to run for ~1 yr with a range of > 10 Mpc in each 4 km interferometer, > 4 Mpc in 2 km interferometer.
- Expect preliminary results by Summer '06
- How can you help?



#### http://einstein.phys.uwm.edu/

- GEO-600 Hannover
- LIGO Hanford
- LIGO Livingston ٠
- Current search ٠ point
- Current search ٠ coordinates
- Known pulsars ٠

User name

Team name

complete

credits

٠

Known supernovae remenants



Now: S3 all-sky search. Next: S4 data, best 40 hours. G050554-00-ZG

October 20 2005



#### **Answer Slides**





October 20 2005



# $\frac{\text{BCV Waveform}}{h(f) = f^{-7/6} (1 - \alpha f^{2/3}) \theta(f_{cut} - f) \exp[i(\phi_0 + 2\pi t_0 f + \psi_0 f^{-5/3} + \psi_3 f^{-2/3})]}$



47