

Science Nuggets

Jolien Creighton University of Wisconsin–Milwaukee

LIGO-G050560-00-Z

Gamma-ray bursts: short and long

Short burst GRB050709

HST Image Credit: Derek Fox

Long burst GRB030329

NASA Image

Possible scenario for short GRBs: neutron star/black hole collision

Search for gravitational wave burst associated with GRB030329

Physical Review D 72 042002 (2005)

Binary Neutron Star Search: LIGO Range

Binary Neutron Star Search Results (S2)

Binary Inspiral Search: LIGO Ranges

Binary Black Hole Merger Phases

Binary Inspiral Search: Computational Cost

- S2 Binary Neutron Star Search:
 - » Unit of computation:
 - 3GHz day per day of data
 - ~ 10¹⁴ floating point operations per day
 - ~ amount of computer power delivered by one CPU per day
 - » 240 GB of data (~10 days analyzed)
 - » 1000 matched filter templates
 - » 6941 nodes in workflow
 - » 200 Units of computation
- Projection: S5 and beyond ...
 - » 10000 templates for binary neutron star search
 - » 600 computational units for binary neutron star search
 - » 6000 computational units for search for primordial binary black holes
 - » More(?) for spinning solar-mass black holes

Binary Inspiral Search Outlook

Scientific outlook:

- Look for connection with short gamma-ray bursts
- Insight into neutron star populations ... constrain:
 - » Stellar evolution models
 - » Population of faint pulsars
- Insight into neutron star size and equation-of-state
- Probe strong-field gravity
- Detect new classes of objects (binary black holes)

Pulsars: target sources

Accreting Neutron Stars

Credit: Dana Berry/NASA

Wobbling Neutron Stars

Credit: M. Kramer

Bumpy Neutron Star

Search for Known Pulsars (S2)

Search for Unknown Pulsars: Computational Issues

- Sensitivity improves with longer integration
- As more data is analyzed, frequency resolution increases
- As frequency resolution increases, more sky positions resolved
 - » 1 day of data: 100000 points on the sky
 - » 1 week of data: 10⁷ points on the sky
 - » 1 year of data: 10¹² points on the sky
- As more sky positions are resolved, more templates are needed
- Therefore: amount of time analyzed limited by amount of computer power available!
 - » 1 day: ~10¹⁹ floating-point operations = ~10⁵ computational units
 - » 1 week: ~10²³ floating-point operations = ~10⁹ computational units
 - » 1 year: ~10³² floating-point operations = ~10¹⁸ computational units

All Sky Search: Einstein@Home

Stochastic Background

Stochastic Background Search (S3)

Stochastic Background Search Goals

Scientific Goals:

- Bound gravitational-wave contribution to total energy in the universe
- Produce a map of gravitational wave stochastic background across the sky
- Probe the universe as it was just after inflation
- Search for background of unresolved gravitational wave bursts

