The View from the Ground: Gravitational Wave Detectors and Data Analysis Techniques



Gravitational Wave / Cosmology Workshop East Tennessee State University November 4-5, 2005







**Ground-based GW detectors** 

**GW** signal types

**Analysis Techniques** 

**Statistical issues** 

**Multi-site coherent analysis** 





LIGO



## **GW Detectors Around the World**







### **Resonant "Bar" Detectors**







### **Resonant "Bar" Detectors**

#### Aluminum cylinder, suspended in middle

GW causes it to ring at one or two resonant frequencies near 900 Hz

LIGO

Sensitive in fairly narrow band (up to ~100 Hz)





AURIGA detector (open)

### **Large Interferometers**





P. Shawhan, ETSU Gravitational Wave / Cosmology Workshop, 4-5 Nov 2005

LIGO

LIGO-G050571-00-Z





Located on DOE Hanford Nuclear Reservation north of Richland, Washington



Two separate interferometers (4 km and 2 km arms) coexist in the beam tubes

P. Shawhan, ETSU Gravitational Wave / Cosmology Workshop, 4-5 Nov 2005

LIGO-G050571-00-Z



GW causes *differential* changes in arm lengths, sensed interferometrically by photodiode

LIGO

Response depends on direction and polarization of incoming wave



## LIGO Optical Layout (Simplified)



P. Shawhan, ETSU Gravitational Wave / Cosmology Workshop, 4-5 Nov 2005

LIGO

LIGO-G050571-00-Z





#### Four "science runs" conducted since 2002

Durations up to 2 months

LIGO

Rest of the time spent improving detectors

#### New science run (S5) starting this month

Will collect data for over a year!

GEO collected data too during S1, S3, S4 ; plans to join S5 partway through

LIGO and GEO data are analyzed jointly by the LSC

## Various analyses published using data from the first three science runs; analysis of S4 in progress

#### LIGO Sensitivity History (Hanford 4km)





LIGO

## Now essentially at design sensitivity!

Detectable range for neutron star binary: ~10 Mpc

For black hole binary: ~100 Mpc

For supernova: probably limited to Milky Way

GEO: currently 1-2 orders of magnitude less sensitive

## **VIRGO Sensitivity History**



LIGO-G050571-00-Z



### **Prospects for Future** Large Interferometers



#### Advanced LIGO

LIGO

Order-of-magnitude sensitivity improvement

Received scientific approval from National Science Board

NSF planning to request funding starting in FY 2008

Three advanced detectors observing by 2013 ?

#### VIRGO upgrade - Being thought about

### LCGT (Japan)

Two 3-km interferometers in Kamioka mountain

Sensitivity comparable to Advanced LIGO

Hope for funding beginning in FY 2007 ; begin observations in 2011 ?

#### AIGO (Australia)

Considering adding 2 km arms to current facility at Gingin

### CEGO (China) ?



LIGO



15

**Ground-based GW detectors** 

**GW** signal types

**Analysis Techniques** 

**Statistical issues** 

Multi-site coherent analysis



### The GW Signal Tableau for ground-based detectors, at least



Short duration Long duration Cosmic string NS / BH Asymmetric Low-mass cusp / kink ringdown inspiral spinning NS Waveform known **High-mass** inspiral Rotation-driven instability Cosmological stochastic Stellar collapse background Waveform Many Binary merger unknown overlapping signals ??? ??? ???







17

**Ground-based GW detectors** 

**GW** signal types

**Analysis Techniques** 

**Statistical issues** 

**Multi-site coherent analysis** 









#### Can be done with short or long templates

#### **Optimal** filtering weights frequency components according to noise

Use a *bank* of templates to cover desired region of signal space

Generally, construct to give a certain minimal match

May use a non-physical parametrization to try to cover desired signal space

LIGO

If parameter space is large, may need to do a hierarchical search





#### Look for an increase in signal power in a time interval,

compared to baseline noise

LIGO

Evaluate significance of the excess

## Typically start by decomposing data into a time-frequency map

Each row (frequency) normalized Could be wavelets instead of Fourier components

Might use multiple resolutions

## Look for "hot" pixels, alone or in clusters







21

#### Uses data from a pair of detectors – try to pick out common signal

#### Assumes that detector noise is uncorrelated

This assumption needs to be checked

#### Can integrate over short or long time interval

Ideally, integration length should match length of signal



Real Detectors ...

... have non-stationary noise

LIGO

- $\Rightarrow$  Data quality cuts
- $\Rightarrow$  Dynamic trigger thresholds
- $\Rightarrow$  Waveform consistency tests  $(\chi^2$ ; excess-noise checks)
- ... have time-varying response ... are affected by environment
- $\Rightarrow$  Track calibration
- $\Rightarrow$  Auxiliary-channel vetoes

Even with these measures, get some false alarms



22

LIGO

### Require Coincidence to Reduce False Alarm Rate



#### Require consistent signals to be seen in multiple detectors

Arrival time (for short-duration signals)

Signal amplitude

Signal phase, etc.

Have to allow for different antenna responses

#### Allows lower thresholds to be used

For a target false alarm rate

#### Networks which have been used for coincidence analyses:

IGEC bar network Two or three LIGO detectors

LIGO-GEO (LSC)

LIGO-TAMA

LIGO-AURIGA







24

**Ground-based GW detectors** 

**GW** signal types

**Analysis Techniques** 

**Statistical issues** 

**Multi-site coherent analysis** 



**Current detectors have no guaranteed sources** 

Want to be conservative about announcing a "detection"

Frequentist point of view: demand a high p-value

## Bayesian point of view: prior is heavily weighted toward undetectability, so need strong evidence

Is it even possible to choose a meaningful prior?

How to deal with the combination of a discrete case (no signal) and a continuum of possible signals?

#### Trickiness of the question: "Is a signal present?"

Observational equivalence of "no signal" and "undetectably small signal"

#### In this regime, "upper limits" are tricky for any approach

One-sided vs. Feldman-Cousins-based frequentist upper limits Upper limit derived from a Bayesian posterior pdf ?

LIGO

### Potential Bias from Choices of Event Selection Criteria



#### e.g. auxiliary-channel veto conditions

Can't choose them based on the final set of event candidates !

#### **Could invalidate frequentist confidence interval**

## Formally, could fold arbitrary information from auxiliary channels into a Bayesian analysis, but hard to do in practice

Hundreds of possibly relevant channels

Presence of a coincident glitch in an auxiliary channel should reduce belief that an event candidate is a real GW, but by how much

Does *absence* of a coincident glitch in some arbitrary auxiliary channel *increase* belief?

#### General technique for sidestepping issues of bias: "blind" analysis

Choose event selection criteria based on a "playground" subsample, or on a set of time-shifted coincidences



## Physically identical *sources* may produce a distribution of observed *signals*

Due to different sky positions, orientations, distances

## Might not have a reliable model to calculate signal from physical parameters

So even if a strong signal is seen, may not be able to tell physical params

#### A *population* of sources may have a range of physical parameters

... as well as a spatial distribution, of course

LIGO







28

**Ground-based GW detectors** 

**GW** signal types

**Analysis Techniques** 

**Statistical issues** 

**Multi-site coherent analysis** 

# What Can We Learn from Multiple Sites?



The signal observed in a given detector *i* is

LIGO



*IF* sky position were known and there were no noise, then two data streams (from different sites) would completely determine  $h_+(t)$  and  $h_x(t)$  at all times

#### Three or more data streams over-determine $h_{+}(t)$ and $h_{\times}(t)$

In principle, should be able to separate out a consistent GW signal from the uncorrelated noise, without any assumptions about the source **except** its sky position

#### Multi-site extension of pairwise cross-correlation



## For an assumed sky position, can form a *null stream* linear combination of any two data streams

- Can combine these with appropriate weights to form an overall null stream with minimal noise
- Then look at the power in the null stream as a function of sky position



#### Other combinations of data streams: excess energy ; correlation

LIGO



#### Is there a GW source?

Null stream power is near zero for some sky position (consistency test)

#### Where is the source?

Sky location of minimum of null stream (parameter estimation)

#### What is best estimate of the signal waveform?

Some sort of weighted sum of data streams, for a certain sky position

#### \* Problem with maximum likelihood with finite set of antennas

"Best estimate" tends to be a large GW signal which happens to have an unfavorable sky position / polarization

Should we "penalize" large-amplitude signals in some way? (Like a prior favoring small signals)



"Detection" criteria

LIGO

**Setting upper limits** 

How to incorporate information from auxiliary channels

Associating signals with astrophysical sources and populations

#### Multi-site coherent analysis

Data stream combinations

"Questions" to ask

How to get "best estimate" of the signal waveform