

All-Sky Search for Gravitational Wave Bursts in LIGO S4 Data

Peter Shawhan, for the LIGO Scientific Collaboration

GWDAW December 16, 2005

LIGO-G050631-04-Z

- Searched triple-coincidence (H1+H2+L1) LIGO data for short (<1 sec) signals with frequency content in range 64–1600 Hz
- Used WaveBurst time-wavelet decomposition to generate triggers, followed by r-statistic cross-correlation tests
- Data quality cuts, significance cuts and veto conditions chosen largely based on time-shifted coincidences
- Preliminary results being presented today

Definition of triple-coincidence data segments for analysis

Basic data quality flags (no hardware injections, no ADC overflows, etc.)

Discarded last 30 seconds before loss of lock

Discarded segments shorter than 300 sec

WaveBurst processed all 3 DARM_ERR streams simultaneously

Wavelet decomposition from 64–2048 Hz with 6 different resolutions from $1/16 \sec \times 8$ Hz to $1/512 \sec \times 256$ Hz

	7		

Whitening, black pixel selection, cross-stream pixel coincidence, clustering Param. estimation: time, duration, frequency, h_{rss} (signal amplitude at Earth)

Found coincident clusters for true time series plus ~100 time shifts

Initially -156.25 to +156.25 sec in 3.125-sec increments (excluding ± 3.125)

Initial cluster significance cut: GC>2.9 & frequency content cut: Required to overlap 64–1600 Hz band

GWDAW, 16 Dec 2005

Based on calibrated h_{rss} estimated by WaveBurst

Require 0.5 < (H1/H2) < 2

CorrPower run on raw data at times of WaveBurst triggers

Data conditioning

LIGO

Downsampled to 4096 Hz

Bandpass filtered with 64 Hz & 1572 Hz corner frequencies

Linear predictor filter used to whiten data

Notch applied around 345 Hz to avoid violin modes

Statistics calculated by CorrPower

Derived from normalized cross-correlations (*r*-statistic) for pairs of detectors

Integration window lengths: 20, 50, 100 ms

Relative time shifts: up to 11 ms for H1-L1 and H2-L1, 1 ms for H1-H2

Gamma : arithmetic mean of three pairwise confidences

R0 : signed correlation of H1 and H2 with zero relative time shift Require R0 to be positive

Some chosen *a priori*, others based on efficiency studies with single-interferometer "glitch" triggers recorded by KleineWelle

- Calibration line dropouts (1-second and single-sample)
- Dips in arm cavity stored light
- Elevated DC light level at antisymmetric port (H1 and L1)
- Elevated seismic noise in 0.9–1.1 Hz band at LHO
- Jet plane fly-over at LHO
- Wind over 35 mph [62 km/h] at LHO
- Used to reject triggers
- Net loss of observation time: 5.6%

LIGO

Effect of Data Quality Cuts on Time-Shifted Coincidences

GWDAW, 16 Dec 2005

LIGO-G050631-04-Z

7

Chosen to make expected background low, but not zero

Used KleineWelle triggers generated from auxiliary channels

Triggers produced for many channels

Established "safe" veto conditions (minimum KleineWelle trigger significance)

Several channels found to be promising on a statistical basis, from comparison with samples of KleineWelle GW channel triggers

Decided to use an OR of veto conditions – but which ones?

Veto effectiveness found to be different for WaveBurst / r-stat triggers

Final choice of 7 veto conditions based largely on examining time-shifted WaveBurst / *r*-stat triggers with largest Gamma values

Able to veto 6 of the top 10, including:

2 with strong signals in accelerometers on H1 and H2 antisymmetric port optical tables

- 3 with glitches in H1 beam-splitter pick-off channels (H1:LSC-POB_I and/or H1:LSC-POB_Q)
- 1 with big signals in H2 alignment system

Deadtime depends on waveform and amplitude of GW signal

Loss of observation time is effectively the sum of DARM_ERR trigger duration (for a simulated signal) and veto trigger duration

For waveforms simulated so far, effective deadtime is:

- less than 1% for signals near detection threshold,
- about 2% for very large signals

Count this against detection efficiency, not observation time

The Search Result

After opening the box ...

Background rate estimate is not rigorous

Non-circular time shifts don't sample all times equally Possible correlations introduced by data conditioning with common set of segments

So take background to be zero for purposes of setting a limit

(The conservative thing to do)

Calculate a frequentist one-sided upper limit (90% C.L.) based on zero events passing all cuts

 $R_{90\%} = \frac{2.303}{15.53 \text{ days}} = 0.148 \text{ per day}$

(S2 rate limit: 0.26 per day)

Efficiency Curve for Q=8.9 Sine-Gaussians (preliminary)

Caveats: preliminary calibration; auxiliary-channel vetoes not applied $h(t) = h_0 \sin(2\pi ft) \exp(-2(\pi ft/Q)^2)$ f =Linearly polarized; random sky position & polarization angle 70 Hz 4.6e-21 100 Hz 1.3e-21 - 153 Hz 1.0e-21 0.8 - 235 Hz 1.3e-21 Efficiency 361 Hz 2.0e-21 0.6 554 Hz 2.4e-21 849 Hz 3.7e-21 0.4 1053 Hz 4.8e-21 0.2 0 10⁻²⁰ 10⁻¹⁹ 10⁻²¹ 10⁻²² $h_{\rm rss} = h_0 \; ({\rm Q}/{\rm 4f})^{1/2} \; / \; \pi^{1/4}$ h_{rss} [strain/\Hz]

GWDAW, 16 Dec 2005

LIGO

LIGO-G050631-04-Z

Efficiency Curve for Gaussians (preliminary)

Caveats: preliminary calibration; auxiliary-channel vetoes not applied

GWDAW, 16 Dec 2005

LIGO

14

LIGO

Summary of Sensitivities (preliminary)

<u><i>h</i>_{rss} at 50% detection efficiency, in units of 10⁻²¹</u>							
Freq (Hz)		S3 :	S2 :				
ഗ 70	8 4.6	—	—				
ü 100	2 1.3	_	82				
is o 153	5 1.0	_	55				
S Ä 235	2 1.3	9	15				
361	_ 2.0	_	17				
5 54	2.4	13	23	S3 values from Amaldi6 presentation			
. <u> </u>	2 3.7	23	39	and proceedings: gr-qc/0511146			
ഗ 1053	4.8	_	_	S2 values from Phys. Rev. D 72,			
Tau (ms)	r F			— 062001 (2005).			
ທ 0.1	3.2	18	43				
au 0.5	<u>ā</u> 1.7	_	26				
 1.0	1.6 😛	_	33				
2 .5	2.6	_	140				
ö 4.0	6.1	-	340				

Summary of Sensitivities (preliminary)

GWDAW, 16 Dec 2005

LIGO

16

LIGO

Preliminary

We are finishing up an all-sky untriggered burst search using S4 LIGO data

Summary

No event candidates pass all cuts

Upper limit on rate of detectable events: 0.15 per day (90% C.L.)

Sensitivity: several times better than S3

