

Robust Vetoes for GW Burst Triggers Using Known Instrumental Couplings

P. Ajith

(for the GEO600 Team)
Albert Einstein Institute and University of Hannover

LSC Meeting, LIGO-Hanford March 21, 2006

LIGO-G060076-00-Z

NOISE TRANSFER

• Transfer function from X to H can be measured by injecting noise at X and measuring X(f) and H(f) [1]

$$T_{\rm XH}(f) = \frac{\tilde{X}(f)^* \tilde{H}(f)}{\tilde{X}(f)^* \tilde{X}(f)}$$

• Assuming that the system is linear and time-invariant, the noise in *X* can be *transferred* (*mapped*) to *H* by

$$\tilde{X}'(f) = T_{XH}(f) \, \tilde{X}(f)$$

[1] J R Smith et al, CQG 23, 527-537 (2006)

• X(f) and H(f) can be thought of as components of two vectors \mathbf{X} and \mathbf{H} defined in two different Hilbert spaces.

- X(f) and H(f) can be thought of as components of two vectors \mathbf{X} and \mathbf{H} defined in two different Hilbert spaces.
- Transfer function from X to H maps \mathbf{X} to the space of \mathbf{H} .

- X(f) and H(f) can be thought of as components of two vectors \mathbf{X} and \mathbf{H} defined in two different Hilbert spaces.
- Transfer function from X to H maps \mathbf{X} to the space of \mathbf{H} .

• **H** is made up of many such 'mapped' noise vectors.

- X(f) and H(f) can be thought of as components of two vectors \mathbf{X} and \mathbf{H} defined in two different Hilbert spaces.
- Transfer function from X to H maps X to the space of H.
- **H** is made up of many such 'mapped' noise vectors.
- Given X', one can calculate the component of **H** that is orthogonal to X' by a Gram-Schmidt orthogonalization

$$ilde{oldsymbol{\delta}} = ilde{f H} - \operatorname{proj}_{ ilde{f X}'} ilde{f H}$$

VETO STRATEGY

- If a non-stationarity (glitch) originates from channel X, it changes the statistics of that segment of data in channel X, and hence, in channel H.
- But, the statistics of the component of **H** that is orthogonal to **X'** remain unchanged.
- This can be tested by a statistical hypothesis test.
- We take the set of coincident triggers in channels X and H and compute δ from the segment of the data containing the burst.
- If δ at the time of the burst is statistically the same as at other times \Rightarrow the non-stationarity is originated from channel X. Thus, we veto the trigger.

ullet Construct the 'excess-power' statistic [2] from $oldsymbol{\delta}$

Expected variance of δ in kth frequency bin

• Construct the 'excess-power' statistic from δ

$$\epsilon = \sum_{k=m}^{m+M} P_k, P_k = \frac{|\tilde{\delta}_k|^2}{\sigma_k^2}.$$

• If the non-stationarity originated in channel X, ϵ will follow a Gamma distribution [3] with some expected parameters.

• Construct the 'excess-power' statistic from δ

$$\epsilon = \sum_{k=m}^{m+M} P_k, P_k = \frac{|\tilde{\delta}_k|^2}{\sigma_k^2}.$$

- If the non-stationarity originated in channel X, ϵ will follow a Gamma distribution with some expected parameters.
- If the computed ϵ is \leq a threshold τ , veto the trigger.

ullet Construct the 'excess-power' statistic from $oldsymbol{\delta}$

$$\epsilon = \sum_{k=m}^{m+M} P_k, P_k = \frac{|\tilde{\delta}_k|^2}{\sigma_k^2}.$$

- If the non-stationarity originated in channel X, ϵ will follow a Gamma distribution with some expected parameters.
- If the computed ϵ is \leq a threshold τ , veto the trigger.
- Threshold au giving a rejection probability ψ can be calculated from

$$\psi = \int_0^\tau \Gamma(x; \alpha, \beta) \, \mathrm{d}x$$
Prob. density

Prob. density of Gamma dist. with scale parameter α and shape parameter β

ullet Construct the 'excess-power' statistic from $oldsymbol{\delta}$

$$\epsilon = \sum_{k=m}^{m+M} P_k, P_k = \frac{|\tilde{\delta}_k|^2}{\sigma_k^2}.$$

- If the non-stationarity originated in channel X, ϵ will follow a Gamma distribution with some expected parameters.
- If the computed ϵ is \leq a threshold τ , veto the trigger.
- Threshold au giving a rejection probability ψ can be calculated from

$$\psi = \int_0^\tau \Gamma(x; \alpha, \beta) \, \mathrm{d}x$$

• α and β are estimated from stationary data around the glitch.

SOFTWARE INJECTIONS

- Q9 sine-Gaussians are injected to white-noise channel X.
- To get channel H: Channel X data is filtered using a time-domain filter, then some extra noise is added to simulate other components of H.
- The response of the filter is the transfer function from X to H.

SOFTWARE INJECTIONS

• Perform the veto analysis after choosing different thresholds. Compare the estimated veto fraction with the predicted rejection probability corresponding to each threshold.

SOFTWARE INJECTIONS

- Perform the veto analysis after choosing different thresholds. Compare the estimated veto fraction with the predicted rejection probability corresponding to each threshold.
- A plausible estimation of false-veto probability: Inject SG waveforms with random parameters to X and H. Perform the veto analysis.

AN ALTERNATIVE METHOD: 'TRIGGER MAPPING'

- An ETG is run over channels *X* and *H* and two sets of triggers are generated.
- Parameters of the burst triggers in channel X can be mapped to channel H, making use of the transfer function from X to H.
- If a trigger in X, mapped to H, is consistent (in time, frequency and amplitude) with a trigger in channel H, veto it.
- A less-rigorous, but computationally inexpensive method.

TRIGGER MAPPING

- A certain number of parameters are associated with each event \mathbf{E}_{X} in channel X, like time, central freq, amplitude $\rightarrow \mathbf{E}_{\mathrm{X}}$ as point $(E_{\mathrm{X}}^{\phantom{\mathrm{X}}} E_{\mathrm{X}}^{\phantom{\mathrm{X}}}, E_{\mathrm{X}}^{\phantom{\mathrm{X}}})$ in a 3-parameter space.
- If we make an assumption about the power spectrum of the underlying burst (like, it is a Gaussian with amplitude $E_{\rm x}^{a}$, central frequency $E_{\rm x}^{f}$ etc.), we can map the power spectrum to channel H using the transfer function, and then can re-estimate the parameters from the 'mapped' power spectrum.
- Mapping the point $\mathbf{E}_{\mathbf{X}}$ (in the space of *X*-triggers) to $\mathbf{E}_{\mathbf{X}'}$ (in the space of *H*-triggers).

If $\mathbf{E}_{X'}$ is 'sufficiently close' to \mathbf{E}_{H} , veto the trigger.

If $\mathbf{E}_{X'}$ is 'sufficiently close' to \mathbf{E}_{H} , veto the trigger.

• Compute the 'distance vector' between $\mathbf{E}_{X'}$ and \mathbf{E}_{H} :

$$\mathbf{w} \equiv \mathbf{E}_{\mathrm{H}} - \mathbf{E}_{\mathrm{X}}'$$

If $\mathbf{E}_{X'}$ is 'sufficiently close' to \mathbf{E}_{H} , veto the trigger.

• Compute the 'distance vector' between $\mathbf{E}_{X'}$ and \mathbf{E}_{H} :

$$\mathbf{w} \equiv \mathbf{E}_{\mathrm{H}} - \mathbf{E}_{\mathrm{X}}'$$

• If $\mathbf{w} \leq \tau$, veto the trigger; thus defining a 'consistency volume'.

If $\mathbf{E}_{X'}$ is 'sufficiently close' to \mathbf{E}_{H} , veto the trigger.

• Compute the 'distance vector' between $\mathbf{E}_{X'}$ and \mathbf{E}_{H} :

$${f w} \equiv {f E}_{
m H} - {f E}_{
m X}'$$

- If $\mathbf{w} \leq \tau$, veto the trigger; thus defining a 'consistency volume'.
- If the ETG errors are Gaussian distributed (with zero mean), \mathbf{w} will be distributed according to Gaussian distributions of mean 0 and variance $\sigma^2(\mathbf{w})$.
- Threshold τ corresponding go a given rejection probability can be calculated from the prob. densities of Gaussian distributions with mean zero and variance $\sigma^2(\mathbf{w})$.

SOFTARE INJECTIONS

- Data in channels *X* and *H* are generated as described before.
- The variance of errors in the parameter-estimation of the ETG is estimated by comparing the trigger-parameters with injected parameters.
- Power spectrum of the bursts in channel *X* is approximated by a Gaussian. (This is good for SG waveforms. But how good is it in real-life?).
- Veto analysis is performed by choosing different thresholds.

SOFTARE INJECTIONS

• An example from SG injections:

SOFTARE INJECTIONS

SUMMARY

- A robust veto strategy is formulated making use of the known instrumental couplings.
- Based on projecting the noise at the detector output into two orthogonal directions, making use of the measured transfer function.
- An alternative method less rigorous, but computationally inexpensive is proposed, making use of the trigger parameters estimated by the ETG.
- Work in progress to apply in to GEO600 data.