

Calibration/validation of the AS_Q_FAST channels

Rick Savage - LHO Stefanos Giampanis – Univ. Rochester

(Daniel Sigg – LHO)

LIGO-G060106-00-W

High frequency length response

LIGO

2

Length response TF detail

- All three interferometers have FAST (262 kHz) data acquisition systems generating AS_Q_FAST signals with 100 kHz bandwidths
- The signals are also digitally heterodyned at 1024 Hz and 37.504 kHz and downsampled to 2048 Hz to generate the 0FSR and 1FSR channels

»	AS_Q_0FSR.mag	AS_Q_1FSR.mag
»	AS_Q_0FSR.phs	AS_Q_1FSR.phs
»	AS_Q_0FSR.real	AS_Q_1FSR.real
»	AS_Q_0FSR.img	AS_Q_1FSR.img

• At LHO the full 262 kHz AS_Q_FAST channels are written to the frames. Not yet implemented at LLO.

AS signal flow

Hardware – AS demod end

whitening filters for ICS 130

March 2006 LSC meeting - LHO

Hardware – ADC end

Whitening filter transfer function

9

ASPD summation for AS_Q and AS_Q_FAST

- » Similar calculation done in adcufast
- Presently, startup.cmd must be updated manually every time medm settings are changed
- » LLO adjusts ASPD matrix coefficients for each lock stretch
- Working toward reading epics settings on the fly.

AS_Q : AS_Q_FAST comparison

L

AS_Q_FAST signals during full ifo. lock

LIGO

0FSR signals

March 2006 LSC meeting - LHO

1FSR signals

- Drive test mass at 37.5 kHz
 - » Attempted during Oct. 2005
 - Factor of five larger value than expected
 - Electronics not designed to be driven at this frequency
 - Uncertainty in force/displacement too high
- Photon calibrator
 - » Now driving at ~ 1600 Hz
 - To resolve peak in ASD factor at the level of a factor of a few above the background requires hundreds of seconds of integration
 - At 37.5 kHz one data point would require ~ one year integration time
- Thermally-excited TM internal mode vibrations
 - » Modeling (and more thought) required

LIGO

"Blind" extrapolation of low-freq. calibration

- Use cal line at ~1150 Hz
- Replace cavity pole approximation with length response given by H_L(f)
- Extrapolate to 100 kHz without HF measurement
 - » Analytic model used to date for single FP cavity probably gets differential mode right, but not leakage of common mode effects into AS port – doesn't model noise floor.
 - » Use full interferometer model such as Finesse to study noise couplings at high frequencies.
- Effort underway to implement "blind" calibration