

AdvLIGO Laser Status

Lutz Winkelmann, Maik Frede, Oliver Puncken, Bastian Schulz Ralf Wilhelm, and Dietmar Kracht

Laser Zentrum Hannover

Frank Seifert, Patrick Kwee and Benno Willke AEI

LSC March 06 G060112-00Z

Outline

- Optimization History of the advLIGO laser
 - New laser design approach
 - Component related complications
 - Quality inspection measures for new components
 - Final results of new approach

New resonator design to improve beam profile / mode control

- Asymmetric resonator design

Better mode control

_			_	
			_	
			_	
			_	
	_	_		
		_	_	

 New resonator design to improve beam profile / mode control

– Asymmetric resonator design => output power ≈ 115 W

- Difficulties with low damage threshold of 45° mirr or coatings
 - Mirrors changed to high power IPG coated ones

 New resonator design to improve beam profile / mode control

– Asymmetric resonator design => output power ≈ 115 W

- Difficulties with low damage threshold of 45° mirr or coatings
 - Mirrors changed to high power IPG coated ones
- Power-loss due to impurities in laser crystal material
 - minimal Er/Yb contamination in crystal material
 - decrease in output power by unknown absorption effects
 - higher thermal-lensing

Comparison of laser crystals old and new

Quality inspection measures for new components: <u>laser crystals</u>

Quality inspection measures for new components: <u>laser crystals</u>

Variation of up to +/-10% in doping concentration for rods from different vendors

- New resonator design to improve beam profile / mode control
 - Asymmetric resonator design => output power \approx **115** *W*
- Difficulties with low damage threshold of 45° mirr or coatings
 - Mirrors changed to high power IPG coated ones
- Power-loss due to impurities in laser crystal material
 - after component (mirrors / Nd:YAG rod) change output power ≈ 125 W

- New resonator design to improve beam profile / mode control
 - Asymmetric resonator design => output power \approx **115** *W*
- Difficulties with low damage threshold of 45° mirr or coatings
 - Mirrors changed to high power IPG coated ones
- Power-loss due to impurities in laser crystal material
 - after component (mirrors / Nd:YAG rod) change output power ~ 125 W
- Limitation of output power due to depolarization effects
 - 45°HR1064nm / HT808nm => phase shift difference f or p- and spolarization up to 30°
 - mirrors act as λ /x-waveplates
 - additional depolarization losses

Mirrors

Old mirror with low damage threshold: phase difference 3° for s- and p-polarization

1064.04 nm : 172.2096, 169.9302, -177.7206

Phase in Reflexion, V/R-Schichten 29/4, Zentralw.: 1054nm, Pol.: p-pol., Einfallsw.: 45°
Phase in Reflexion, V/R-Schichten 29/4, Zentralw.: 1054nm, Pol.: s-pol., Einfallsw.: 45°

Phase in Reflexion, V/R-Schichten 29/4, Zentralw.: 1054nm, Pol.: Delta, Einfallsw.: 45°

Mirrors

New high power mirror with IPG coating: phase difference 30° for s- and p-polarization

1064.04 nm : -135.2536, -164.0485, -151.2051

Phase in Reflexion, V/R-Schichten 4/30, Zentralw.: 808nm, Pol.: p-pol., Einfallsw.: 45°
Phase in Reflexion, V/R-Schichten 4/30, Zentralw.: 808nm, Pol.: s-pol., Einfallsw.: 45°

Phase in Reflexion, V/R-Schichten 4/30, Zentralw.: 808nm, Pol.: Delta, Einfallsw.: 45°

Mirrors

Mirrors actually used: phase difference 20° for s- and p-polarization

1064.04 nm : 101.918, 123.4582, 158.4599

Phase in Reflexion, V/R-Schichten 30/2, Zentralw.: 1170nm, Pol.: p-pol., Einfallsw.: 45°
Phase in Reflexion, V/R-Schichten 30/2, Zentralw.: 1170nm, Pol.: s-pol., Einfallsw.: 45°

Phase in Reflexion, V/R-Schichten 30/2, Zentralw.: 1170nm, Pol.: Delta, Einfallsw.: 45°

Quality inspection measures for new components: <u>mirror's</u>

- New resonator design to improve beam profile / mode control
 - Asymmetric resonator design => output power \approx **115** *W*
- Difficulties with low damage threshold of 45° mirr or coatings
 - Mirrors changed to high power IPG coated ones
- Power-loss due to impurities in laser crystal material
 - after component (mirrors / Nd:YAG rod) change output power ~ 125 W
- Limitation of output power due to depolarization effects
 - Increased output power by use of mirrors with 20° phase shift to ≈ 150 W

- New resonator design to improve beam profile / mode control
 - Asymmetric resonator design => output power \approx **115** *W*
- Difficulties with low damage threshold of 45° mirr or coatings
 - Mirrors changed to high power IPG coated ones
- Power-loss due to impurities in laser crystal material
 - after component (mirrors / Nd:YAG rod) change output power ~ 125 W
- Limitation of output power due to depolarization effects
 - Increased output power by use of mirrors with 20° phase shift to \approx **150** *W*
- Improvement of locking range
 - Replaced front-end by 35 W Nd:YVO₄ amplifier

New Laser Design

Injection-Locked Single Frequency Output-Power

Single-frequency TEM₀₀ output power 183 W

Beam Quality

Optimization of front-end to HPL mode-matching: Further improvements in output power and beam quality possible

Summary and Outlook

- 35 W front-end implemented
- 183 W linearly polarized output power (>200 W expected due to new mirrors)
- Beam quality $M^2 < 1.2$ (has to be optimized)

- Quality inspection measures for incoming components
- Further investigation on PET mirror resonance
- More accurate mode-matching of front-end and HPL

