

Current status of the Mesa beam experiment: Tilt sensitivity

Livia Cerullo University of Sannio, Benevento, Italy LIGO seminar September 12 2006

LIGO-G060497-00-R

Current Status of Mesa Beam Experiment

Tilt Sensitivity

• Results of work done

• Future work

Thermalnoiselimitsthesensitivityof gravitationalwaveinterferometric detectors

Gaussian Beam -

GO

Mesa Beam

Gaussian Beam

Mesa Beam

LIGO

Introduction

The Mesa Beam is a superposition of minimal Gaussians with $w_0 = \sqrt{(L/k)}$ $U(D,r) = \int_{C_D} \exp \left[\frac{-\left[(x - x_0)^2 + (y - y_0)^2 \right] \left[1 + i \right]}{2w_0} dx_0 dy_0 \right] dx_0 dy_0$ Supported by *nearly-flat* mirrors with "Mexican-hat" profile

LIGO

5

LIGO

Excepted Thermal noise reduction

AdLIGO sensitivity (fused silica substrate)

Ref. Agresti LIGO-G050310-00-R

Fabry-Perot Cavity

IGO

Reshaping the FP arm cavity mirrors it is possible to obtain a flat top beam

Vacuum pipe

Flat folding mirror

INVAR rod

M2 Caltech prototype

• Rigid, folded and suspended

2x 3.5 m

• L = 7.3 m

Flat input mirror MH mirror

Cavity Finesse

LIGO

Mirror maps

0.04

MHM3 Central portion - Tight screws, glued mount 1.03 microns -0.01 70. 0.02 40.00 0.04 $\mathbf{p}\mathbf{q}$

LIGO

Mirror maps

Current status

Production of acceptable flat beam w/ imperfect optics

-2

LIGO

tilt

Tilts of spherical mirrors translate optical axis

Tilts of MH mirrors:
change in the optical axis
resonant beam phase front change with the alignment

Tilt Sensitivity

Investigate the susceptibility of mesa field to tilts of MH mirror

Tilt measurement, first approach: PZT

IGO

PZT procedure:Lock the cavitySweep one mirror

Tilt measurement, Second Approach:Optical Lever & CCD

Tilt measurement, Third Approach: Optical Lever & Quad-Photodiode

LIGO

Results

17

Future Work

Caltech

Improve methods for tilt measurement

- Subtract beam jitter away
- Fibre-coupled laser
- Triggered beam capture with lock-in detection
- Power Recycling

• New Flat Mirrors (LMA)

Future Work

Possibly Elsewhere

- Build a nearly Concentric MIH mirror cavity
- Thermal noise measurements (MH-TNI)

Riccardo De Salvo
Innocenzo M. Pinto
Vincenzo Galdi

John Miller

• Monica Varvella

Juri Agresti

• Marco Tarallo