

Limits on a

Stochastic Background of Gravitational Waves

For the stochastic analysis group Stefan Ballmer California Institute of Technology

10/23/2006

Stefan Ballmer, Caltech

Outline

- i. Introduction
- ii. Isotropic background search
- iii. Anisotropic background (directional) search
- iv. Other activities:
 - i. Hanford 4km + 2km search
 - ii. Hanford 4km + 2km high frequency (37.5kHz) search
 - iii. ALLEGRO + Ligo Livingston search

10/23/2006

Stefan Ballmer, Caltech

Introduction

The Gravitational Wave background can be

- Isotropic (i.e. only small anisotropies)
 - Primordial origin (e.g. inflation)
 - Astrophysical origin, from many weak sources
- Anisotropic
 - Astrophysical origin, from fewer strong sources

Wave form unknown, but signal always present

- Analysis method:
 - Cross-correlation between two detectors

Isotropic Background of Gravitational Waves

• Energy density:

$$\rho_{GW} = \frac{c^2}{32\pi G} < \dot{h}_{ab} \dot{h}^{ab} >$$

• Characterized by logfrequency spectrum:

$$\Omega_{GW}(f) = \frac{1}{\rho_c} \frac{d\rho_{GW}(f)}{d\ln f}$$

• Related to the strain power spectrum:

$$S(f) = \frac{3H_0^2}{10\pi^2} \frac{\Omega_{GW}(f)}{f^3}$$

• Strain scale:
$$h(f) = 6.3 \times 10^{-22} \sqrt{\Omega_{GW}(f)} \left(\frac{100 \text{ Hz}}{f}\right)^{3/2} \text{ Hz}^{-1/2}$$

10/23/2006

Stefan Ballmer, Caltech

Detection Strategy, isotropic

• Cross-correlation estimator

Stefan Ballmer, Caltech

G060511-00-0 5

10/23/2006

Landscape

S5 Status (1)

- **Online analysis:**
 - **Quick feedback**
 - No data-quality cuts, calibration not up to date ...
- First pass at H1L1:
 - **Time-shift: defining cuts** blindly.
 - Calibration available: Nov 5, 2005 – Apr 3, 2006.
 - 32 Hz high-pass filter, in order to push analysis down to 40 Hz.
 - Several lines correlated between H1 and L1:
 - 48.0 Hz.
 - 108.9 Hz (simulated pulsar),
 - 179.9-180.1 Hz.
 - 193.7 Hz (simulated pulsar)

10/23/2006

Stefan Ballmer, Caltech

S5 Status (2)

- Flat spectrum, $H_0 = 72 \text{ km/s/Mpc:} \sigma_\Omega = 1.67 \times 10^{-5}$
 - 2.5× better than S4, but still weaker than the BBN bound (~ 1.1×10^{-5} in our frequency band).

Directional search motivation

- Stochastic GW Background due to Astrophysical Sources?
 - Not isotropic if dominated by nearby sources
 - → Do a *Directional Stochastic Search*
- Source position information from
 - Signal time delay between different sites (sidereal time dependent)
 - Sidereal variation of the single detector acceptance
- Time-Shift and Cross-Correlate!

Detection Strategy, point source

• Cross-correlation estimator

$$Y = \int_{-T/2}^{+T/2} dt_1 \int_{-T/2}^{+T/2} dt_2 \ s_1(t_1) \ s_2(t_2) \ Q(t_2 - t_1) = \int_{-\infty}^{+\infty} df \ \tilde{s}_1^*(f) \ \tilde{s}_2(f) \ \tilde{Q}(f)$$

$$\sigma_Y^2 \approx \frac{T}{2} \int_0^{+\infty} df \ P_1(f) \ P_2(f) \mid \tilde{Q}(f) \mid^2$$

$$\gamma_{\text{point}}(t,f) = \sum_{A=+,\times} e^{i2\pi f \Omega \frac{\Lambda^{0}(t)}{c}} F_{1,t}^{A}(\Omega) F_{2,t}^{A}(\Omega)$$

 $\tilde{Q}(t,f) = \frac{1}{N} \frac{\gamma_{\text{point}}(t,f)H(f)}{P_1(f)P_2(f)}$

Strain Power: $H(f) = H_{\beta}(f/100Hz)^{\beta}$

Choose N such that: $< Y >= H_{\beta}$ Stefan Ballmer, Caltech G060511-00-0 10

10/23/2006

S4 Upper Limit map , H(f)=const

S4 Upper Limit map , H(f)~f-3

Application: Low-Mass X-ray Binary (LMXB)

• Accretion driven pulsars

- Spun up to 300Hz $< f_{spin} < 730$ Hz
- Torque balanced by GW?
 Likely for B<< 10¹¹ Gauss
- From torque balance:

$$L_{GW} pprox rac{f_{spin}}{f_{Kepler}} L_X$$

(Artist's impression: NASA)

- Sco-X1:
 - Is brightest X-ray source in sky
 - Low magnetic field (~10⁷ Gauss)
 - Spin frequency unknown

Frequency dependent Strain Upper Limit Sco-X1

10/23/2006

Stefan Ballmer, Caltech

Other activities

- Deconvolution of maps
 - Use maximum likelihood estimator to reduce PSF
- Hanford 4km & 2km analysis
 - Environmental sources that explain excess coherence identified
- High frequency (37.5kHz) analysis
 - Exploit interferometer sensitivity at the 1st free spectral range
- Livingston ALLEGRO (GW bar at LSU) analysis
 - has decent sensitivity around 915Hz (Strain ~ 10⁻²¹ Hz^{-1/2)}
 - 40km from LIGO Livingston (Overlap Reduction Function close to 1)
- LIGO-VIRGO
 - Working on code compatibility for future collaboration

Background material

- Method paper
 - Allen, Romano, PRD 59 102001 (1999) <u>http://prola.aps.org/abstract/PRD/v59/i10/e102001</u>
- Most recent paper:
 - Isotropic upper limit, S4, submitted to in ApJ: <u>http://arxiv.org/abs/astro-ph/0608606</u>
- Thesis
 - Directional search, Stefan Ballmer, MIT, (Ph.D).: <u>http://ligo.mit.edu/~sballmer/thesis.pdf</u>
 - H1-H2 low frequency search Nickolas Fotopoulos, MIT, (M.S.): <u>http://web.mit.edu/~nvf/www/thesis_as_accepted.pdf</u>

Stefan Ballmer, Caltech

10/23/2006

Stefan Ballmer, Caltech