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GRAVITATIONAL WAVES

What are gravitational waves? A change in the space-time 
metric (in the weak field approximation)

gμν = ημν – hμν hμν << 1
Where                        ⁭ hμν =  − (16πG/c4) Tμν

=   0        (in free space) 
Generated by catastrophic events such as SN collapse, binary 

star or black hole mergers; should be emitted by rotating 
astrophysical bodies (i.e. pulsars with Q ≠ 0).

Possibly produced in the early universe and manifested today 
as a stochastic background.

Estimates of the amplitude density of gravitational waves at the
earth (strain density)

h(f) ~ 10 -23/√Hz 
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DETECTION OF  a G.W. 
1. Direct coupling to matter: J.Weber’s resonant cylinders absorb 

energy from the wave and “ring”. They are narrow band devices and 
of limited sensitivity even when cooled to mK temeperatures.

2. Direct coupling to photons: In R.L.Forward’s and R.Weiss’
interferometers the GW interacts “elastically” with the optical field.

SIDEBANDS AT ±Ω ARE DUE TO ABSORPTION AND 
STIMULATED EMISSION OF A GRAVITON FROM/INTO THE FIELD

Ω
ω + Ω

ω ω

ω - Ω
Ω

Usual interpretation: the distance between free-falling mirrors 
is modified resulting in a phase shift of the stored optical field.
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end test mass

LASER

recycling
mirror

•Add  mirror to "recycle" photons 
(equivalent to more laser power)

6W

150 W

15 kW
(0.2W)

4 km Fabry-Perot cavity

•Want "optical" arm length ~ λGW /4 
for best antenna response

•Adds complexity; now each arm 
needs to be held near

L =  k * λLASER /2 

Recycled Michelson Interferometer
with Fabry-Perot arms
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THE HANFORD AND LIVINGSTON 
LIGO INTERFEROMETERS
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LIGO Beam Tube
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LIGO Vacuum Equipment
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CORE OPTICS

10 kg Fused Silica,
25 cm diameter
10 cm thick
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NowInauguration

1999 2000 2001 2002 2003
3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

First Lock Full Lock all IFO 

10-17 10-18 10-20 10-21

2004 2005
1 2 3 4 1 2 3 4 1 2 3 4

2006

First 
Science 
Data

S1 S4Science S2 RunsS3 S5

10-224K strain noise at 150 Hz [Hz-1/2]

LIGO TIME LINE
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June 2006 LIGO-G060293-01-Z

S5 Science Run: Nov ‘05 -…

hrms = 3x10-22 in 100Hz band
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Astrophysical Sources of 
Gravitational Waves

● Compact binaries
– Black holes & neutron stars
– Inspiral and merger
– Probe internal structure, 

populations, and spacetime 
geometry

● Spinning neutron stars
– Isolated neutron stars with 

mountains or wobbles
– Low-mass x-ray binaries
– Probe internal structure and 

populations
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Gravitational-Wave Bursts

Catastrophic events involving solar-
mass (1-100 Mo) compact objects.
» core-collapse supernovae
» accreting/merging black holes
» gamma-ray burst engines
» other … ???

SN 1987 A

Sources typically not well understood, 
involving complicated (and 
interesting!) physics. 
» Dynamical gravity with event horizons
» Behavior of matter at supra-nuclear 

densities

Lack of signal models makes GWBs
more difficult to detect.



1310/21/06 Lal Jain Fest

Progress in Upper Limits

Lower amplitude 
limits from lower 
detector noise

• No GWBs detected through S4.
• Set limits on GWB rate as a function of amplitude.

S2
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S4 projected
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Lower rate limits 
from longer 
observation times
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Gravitational waves from 
compact binaries

● LIGO is sensitive to gravitational waves from binary 
systems with neutron stars & black holes

– Waveforms depend on masses and spins. 

● Binary neutron 
stars

– Estimates give 
upper bound of 1/3 
yr in LIGO S5

● Binary black 
holes

– Estimates give 
upper bound of 
1/yr in LIGO S5
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Binary Neutron Stars
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S2 Observational Result

Phys. Rev. D. 72, 082001 (2005)

● S3 search

● Under internal review

– 0.09 yr of data
– ~3 Milky-Way like galaxies

– S4 search complete
– Under internal review
– 0.05 yr of data
– ~24 Milky-Way like 

galaxies
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• Bright bursts of gamma 
rays 
– occur at cosmological 

distances 
– seen at rate ~1/day.

• Long duration > 2s 
– associated with 

“hypernovae” (core 
collapse to black hole)

– Hjorth et al, Nature 423
847 (2003).

– Leonor/Sannibale, 
Session W11

Strongly relativistic -
Interesting targets for LIGO!
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• Use triggers from 
satellites
– Swift, HETE-2, 

INTEGRAL, IPN, 
Konus-Wind

– Include both “short”
and “long” GRBs

• Cross correlate data 
between pairs of 
detectors around time of 
event
– 25 – 100 ms target 

signal duration
– [-2,+1] min around 

GRB

sample GRB
lightcurve
(BATSE)

trigger
time
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• No loud signals 
seen so far. 

• Look also for 
weak cumulative 
effect from 
population of 
GRBs.
– Use binomial test 

to compare to 
uniform 
distribution.

• No significant 
deviation from 

Leonor / Sannibale, Session W11

expected distribution
if no signal

probabilities of 
observed

cross-correlations
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Continuous waves

Credit: Dana Berry/NASA Credit: M. Kramer

Accreting Neutron Stars Wobbling Neutron Stars
Bumpy Neutron Star

Low-mass x-ray binary Wobbling pulsars
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Known pulsars S5 preliminary

● 32 known isolated, 44 
in binaries, 30 in 
globular clusters

Lowest ellipticity upper limit:
PSR J2124-3358 

(fgw = 405.6Hz, r = 0.25kpc) 
ellipticity = 4.0x10-7
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Einstein@Home

● Matched-filtering for 
continuous GWs

● All-sky, all-frequency 
search
– computationally 

limited 
● Aiming at detection, not 

upper limits
● Public outreach 

distributed computing

To participate, sign up at 
http://www.physics2005.org

● S3 results:
– No evidence of pulsars

● S4 search
– Underway
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Cross-correlate two data streams x1 and x2
For isotropic search optimal statistic is

* GW
1 23

1 2

γ(f) Ω (f)Y df x (f) x (f)
N f  P (f) P (f)

∞

−∞

= ∫ % %

“Overlap Reduction Function”
(determined by network geometry)

frequency (Hz)

γ(f)

Detector noise spectra

Stochastic Background
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Technical Challenges

Example: 
» Correlations at 

harmonics of 1 Hz.
» Due to GPS timing 

system.
» Lose ~3% of the total 

bandwidth (1/32 Hz 
resolution).
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Simulated
pulsar line

Digging deep into instrumental noise looking for small 
correlations.
Need to be mindful of possible non-GW correlations 
» common environment (two Hanford detectors)
» common equipment (could affect any detector pair!)
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S4: Sensitivity vs Frequency

S4 Analysis Details
Cross-correlate Hanford-Livingston
» Hanford 4km – Livingston
» Hanford 2km – Livingston
» Weighted average of two 

cross-correlations (new in S4).
» Do not cross-correlate the 

Hanford detectors.

Data quality:
» Drop segments when noise changes

quickly (non-stationary).
» Drop frequency bins showing instrumental 

correlations (harmonics of 1 Hz, bins with pulsar 
injections).

Bayesian UL:  Ω90% = 6.5 × 10-5

» Use S3 posterior distribution for S4 prior.
» Marginalized over calibration uncertainty with 

Gaussian prior (5% for L1, 8% for H1 and H2).
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Radiometer: Proof-of-Principle

Analysis of a simulated point source at the position of the 
Virgo galaxy cluster (12.5h,12.7 ).
» simulated H1-L1 data
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Pre-BB 
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Pulsar
Timing

LIGO S1: Ω0 < 44
PRD 69 122004 (2004)

LIGO S3: Ω0 < 8.4x10−4

PRL 95 221101 (2005)

Predictions and Limits

Adv. LIGO, 1 yr data
Expected Sensitivity

~ 1x10−9

Cosmic strings

LIGO S4: Ω0 < 6.5x10−5

(new)
BB Nucleo-
synthesis

CMB+galaxy+Ly-α
adiabatic

homogeneous
Initial LIGO, 1 yr data
Expected Sensitivity

~ 4x10−6

EW or SUSY 
Phase transition

Cyclic model
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