Coherent Bayesian analysis of inspiral signals

Christian Röver¹, Renate Meyer¹, Gianluca Guidi², Andrea Viceré² and Nelson Christensen³

> ¹The University of Auckland Auckland, New Zealand
> ²Università degli Studi di Urbino Urbino, Italy
> ³Carleton College Northfield, MN, U.S.A.

LIGO-G060625-00-Z

Overview:

- **1.** The Bayesian approach
- **2.** MCMC methods
- **3.** The inspiral signal
- **4.** Priors
- 5. Example application

& C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: Coherent Bayesian analysis of inspiral signals

The Bayesian approach

- idea: assign probabilities to parameters θ
- pre-experimental knowledge: prior probabilities / -distribution $p(\theta)$
- data model: likelihood $p(y|\theta)$
- application of **Bayes' theorem** yields the **posterior distribution**

 $p(heta|y) \propto p(heta) p(y| heta)$

conditional on the observed data y.

• posterior distribution combines the **information in the data** with the **prior information**

MCMC methods - what they do

• Problem -

given: posterior distribution $p(\theta|y)$ (density, function of θ) wanted: mode(s), integrals,...

• what MCMC does:

simulate random draws from (any) distribution, allowing to approximate any integral by sample statistic (e.g. means by averages etc.)

• Monte Carlo integration

MCMC methods - how they work

- <u>Markov</u> <u>Chain</u> <u>Monte</u> <u>Carlo</u>
- random walk
- Markov property: each step in random walk only depends on previous
- stationary distribution is equal to the desired posterior $p(\theta|y)$
- most famous: Metropolis- (Hastings-) sampler especially convenient: normalising constant factors to p(θ|y) don't need to be known.

MCMC methods

- Metropolis-algorithm may also be seen as optimisation algorithm: improving steps always accepted, worsening steps sometimes (→ Simulated Annealing)
- in fact: purpose often *both* **finding** mode(s) *and* **sampling** from them

The inspiral signal

- measurement: time series (signal + noise) at, say, 3 separate interferometers
- **signal**: chirp waveform; 2.5PN amplitude, 3.5PN phase^{1,2}
- 9 parameters: masses (m_1, m_2) , coalescence time (t_c) , coalescence phase (ϕ_0) , luminosity distance (d_L) , inclination angle (ι) , sky location (δ, α) and polarisation (ψ)

²L. Blanchet et al.: *Gravitational-wave inspiral of compact binary systems to 7/2 post-Newtonian order*. Phys. Rev. D 65, 061501 (2002).

& C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: Coherent Bayesian analysis of inspiral signals

¹K.G. Arun et al.: *The 2.5PN gravitational wave polarizations from inspiralling compact binaries in circular orbits*, Class. Quantum Grav. 21, 3771 (2004).

The signal at different interferometers

- **'local' parameters** at interferometer *I*:
 - coalescence time $(t_c) \rightarrow \text{local coalescence time } (t_c^{(I)})$ polarisation $(\psi) \rightarrow \text{local polarisation } (\psi^{(I)})$
- sky location (δ, α) \rightarrow altitude ($\vartheta^{(I)}$) / azimuth ($\varphi^{(I)}$)
- **noise** assumed **gaussian**, **coloured**; interferometer-specific spectrum
- likelihood computation based on Fourier transforms of data and signal
- noise **independent** between interferometers \Rightarrow coherent network likelihood is **product** of individual ones

Prior information about parameters

- different locations / orientations equally likely
- masses: uniform across $[1 M_{\odot}, 10 M_{\odot}]$
- events spread uniformly across space: $P(d_L \le x) \propto x^3$
- but: certain SNR required for detection
- cheap **SNR substitute**: signal **amplitude** \mathcal{A}
- primarily dependent on masses, distance, inclination: $\mathcal{A}(m_1, m_2, d_L, \iota)$
- C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: Coherent Bayesian analysis of inspiral signals

• introduce sigmoid function linking **amplitude** to **detection probability**³

³R. Umstätter et al.: *Setting upper limits from LIGO on gravitational waves from SN1987a*. Poster presentation; also: paper in preparation.

Resulting (marginal) prior density

& C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: Coherent Bayesian analysis of inspiral signals

Marginal prior density

← C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: Coherent Bayesian analysis of inspiral signals

Marginal prior densities

& C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: Coherent Bayesian analysis of inspiral signals

Prior

- prior 'considers' Malmquist effect
- more realistic settings once **detection pipeline** is set up

↔ C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: Coherent Bayesian analysis of inspiral signals

MCMC details

• Reparametrisation,

most importantly: chirp mass m_c , mass ratio η

• Parallel Tempering⁴

several *tempered* MCMC chains running in parallel sampling from $p(\theta|y)^{\frac{1}{T_i}}$ for 'temperatures' $1 = T_1 \leq T_2 \leq \dots$

• Evolutionary MCMC⁵

'recombination' steps between chains-motivated by Genetic algorithms

⁴W.R. Gilks et al.: *Markov chain Monte Carlo in practice* (Chapman & Hall / CRC, 1996).

⁵F. Liang, H.W. Wong: *Real-parameter Evolutionary Monte Carlo with applications to Bayesian mixture models*. J. Am. Statist. Assoc. 96, 653 (2001)

Example application

• simulated data:

 $2\,M_{\odot}$ - $5\,M_{\odot}$ inspiral at 30 Mpc distance measurements from 3 interferometers:

SNR

LHO (Hanford)	8.4
LLO (Livingston)	10.9
Virgo (Pisa)	6.4
network	15.2

- data: 10 seconds (LHO/LLO), 20 seconds (Virgo) before coalescence, noise as epected at design sensitivities
- computation speed: 1-2 likelihoods / second

C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: Coherent Bayesian analysis of inspiral signals

↔ C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: Coherent Bayesian analysis of inspiral signals

← C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: Coherent Bayesian analysis of inspiral signals

17

↔ C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: Coherent Bayesian analysis of inspiral signals

18

↔ C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: Coherent Bayesian analysis of inspiral signals

↔ C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: Coherent Bayesian analysis of inspiral signals

some posterior key figures

	mean	95% c.i.	true	unit
chirp mass (m_c)	2.699	(2.692, 2.707)	2.698	${\sf M}_{\odot}$
mass ratio (η)	0.207	(0.192, 0.225)	0.204	
coalescence time $\left(t_{c} ight)$	12.3455	(12.3421, 12.3490)	12.3450	S
luminosity distance $\left(d_{L} ight)$	31.4	(17.4, 43.5)	30.0	Мрс
inclination angle (ι)	0.726	(0.159, 1.456)	0.700	rad
declination (δ)	-0.498	(-0.539, -0.456)	-0.506	rad
right ascension $(lpha)$	4.657	(4.632, 4.688)	4.647	rad
coalescence phase (ϕ_0)			2.0	rad
polarisation (ψ)			1.0	rad

MCMC chain 1 -temperature = 1

↔ C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: Coherent Bayesian analysis of inspiral signals

MCMC chain 2 - temperature = 2

↔ C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: Coherent Bayesian analysis of inspiral signals

MCMC chain 3 -temperature = 4

↔ C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: Coherent Bayesian analysis of inspiral signals

MCMC chain 4 — temperature = 8

↔ C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: Coherent Bayesian analysis of inspiral signals

Six tempered chains 'in action'

ℜ C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: Coherent Bayesian analysis of inspiral signals

Outlook

- incorporation into a 'loose net' detection pipeline for large mass ratio inspirals
- use information supplied by detection pipeline (prior or starting point)
- further parameters, e.g. spin effects

& C. Röver, R. Meyer, G. Guidi, A. Viceré and N. Christensen: Coherent Bayesian analysis of inspiral signals