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Outline of Talk

• Introduction to gravitational waves: sources and 
detection

• LIGO – current status

• Introduction to Advanced LIGO

• Advanced LIGO suspension design

• Conclusion
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Newtonian Gravity           Einstein’s Theory

“action at a distance”

2r
GMmF =

gravitation = 
curvature of space-time

Einstein’s field equations
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Einstein Simplified
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Gravitational Waves (GW)
• What are GW?

• waves in curvature of space-time 
• a prediction of general relativity
• produced by acceleration of mass 

(c.f. EM waves produced by accelerated 
charge)

• travel at speed of light
BUT

• gravitational interactions are very weak
• no dipole radiation (due to conservation of 

momentum and mass of only one “sign”)

To produce significant flux requires asymmetric 
accelerations of large masses      

Astrophysical Sources
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Gravitational Wave Sources
• Bursts

• catastrophic stellar collapse to form black 
holes or neutron stars

• final inspiral and coalescence of neutron 
star or black hole binary systems 

(possibly associated with gamma ray bursts)

• Continuous
• pulsars (e.g. Crab)
(sign up for Einstein@home)
• low mass X-ray binaries                          

(e.g. Sco-X1)

• Stochastic Background
• random background noise associated with 

cosmological processes, e.g. inflation, 
cosmic strings….

A New Astronomy

SN1987a
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Evidence for Gravitational Waves:
Radio Observations of Binary Pulsar PSR1913+16

Orbit decaying, with emission of 
gravitational waves             
(rate of decay ~3 mm per orbit, 
merger in ~300 million yrs)

(Taylor and Weisberg, Ap. J. 253, 1982)

Expected GW signal from 
binary coalescence

A highly relativistic binary pulsar was 
discovered in late2003: merger in 
85Myrs (much shorter than other known 
systems)

Statistics small – this observation 
increased merger rate estimate by 
order of magnitude

Hulse and Taylor won Nobel Prize in 1993 
for discovery of this pulsar
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Simulation of Merging Black Holes

Credit: Henze, NASA

J Baker et al. PRL 96, 111102, 2006
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Gravitational Wave Detection
• Detection of GW - How?

• Measure the time-dependent tidal strain in space produced 
by the waves

• Magnitude of effect?
• consider simplest detector – two free masses a distance L

apart whose separation is monitored

L
• a gravitational wave of amplitude h will produce a strain 

given approximately by

• largest signals (very rare) : h ~ 10-19

• for reasonable event rate : h ~ 10-22 -10-23

h
L
L
≈

Δ

1 period
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Gravitational Wave Detection

• long baseline laser interferometry between freely 
suspended test masses using a Michelson Interferometer

Simplified optical layout



G060626-00-R 

11

Advantages of Interferometer

• Differential measurement –
relaxes requirement on laser 
frequency stability

• Matches to quadrupole nature 
of gravitational wave

• Wideband operation
• Sensitivity to strain scales with 

armlength: use long baseline, L
• Further increase in sensitivity 

by folding light in the arms:
• Fabry Perot cavities      
• delay lines
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WORLDWIDE  GW 
INTERFEROMETER NETWORK
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LIGO Observatories

LIGO Hanford Observatory, WA

LIGO Livingston Observatory, LA

LIGO = Laser Interferometer 
Gravitational Wave Observatory

NSF funded. Designed and built by 
Caltech and MIT.



G060626-00-R 

14

LIGO Interferometry
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Sensitivity Limits and Noise Sources

• Photon Shot Noise
-high frequencies 

• Thermal Noise (in 
suspensions and test 
masses) 
- mid frequencies

• Seismic noise
- low frequencies

• Many “technical” noise 
sources

e.g. electronics noise from 
control systems, laser 
intensity noise, frequency 
noise, beam jitter, 
upconversion of low 
frequency noise 
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Mitigation of Noise Sources
• Photon shot noise

• 10 W Nd-YAG laser, Fabry Perot cavities in each arm,  
power recycling mirror

• Thermal Noise
• Use low loss materials
• Work away from resonances
• Thin suspension wires

• Seismic Noise
• Passive isolation stack
• Pendulum suspension

Operate under high 
vacuum
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Evolution of LIGO Sensitivity

Best sensitivity now up to 
14.5 MPc for inspiral range

NSF review report      
(Nov 05):

“All three interferometers 
have achieved, and 
slightly surpassed the 
design requirement……”

“… remarkable milestone 
achievement…”

Science Runs

S1 Aug-Sept 02

S2 Feb-April 03

S3 Oct 03-Jan 04

S4 Feb-March 05

S5 From Nov 05

Binary neutron star inspiral range S1: ~20 kpc -> S5: ~15 Mpc
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Results so far

• 15 papers published from S1 – S3 presenting searches and upper 
limits:
• inspiralling binary neutron stars 
• Inspiralling binary black holes and primordial black hole coalescences
• stochastic background
• gravitational waves bursts, general and specific (associated with 

gamma ray bursts)
• periodic gravitational waves from known and unknown sources

• Numerous technical papers on instrumentation and data analysis 
techniques

Info on observational results at  http://www.ligo.org/results/

http://www.ligo.org/results/


G060626-00-R 

19

LIGO Science 5 (S5) Run and Beyond

• Target: 1 year’s worth of coincidence data at design 
sensitivity

• Started Nov 2005: currently > 50% towards target, 
should complete early Autumn 2007

• Online and offline analysis ongoing
• LIGO could possibly detect a signal during its current 

observing run. 
• Advanced LIGO is aimed at achieving a sensitivity at 

which at least several signals per month (perhaps per 
week) should be detected. 

• Start of Adv. LIGO funding possibly FY08 
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LIGO vs Advanced LIGO

Figure from B Berger

Factor of 10 in 
sensitivity gives 
factor of 1000 in 
volume

• NS-NS inspiral
reach:15 Mpc
160 Mpc

• z = 0.4 range for 
20Mo BH/BH 
collisions

• upper limit for ΩGW
<10-8 after 1 year of 
integration
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Projected Advanced LIGO Sensitivity

• Major upgrade to all 
subsystems 

• Improved 
performance at all 
frequencies
• Factor of ~10 in 

amplitude sensitivity 
(broadband) 

• Tunable response for 
enhanced narrowband 
sensitivity 

• Low frequency limit 
decreased from 40 Hz 
to 10 Hz
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Advanced LIGO performance

• Newtonian background,
estimate for LIGO sites

• Seismic ‘cutoff’ at 10 Hz

• Suspension thermal noise

• Test mass + coating 
thermal noise

• Unified quantum noise 
dominates at 
most frequencies for full
power, broadband tuning

Initial LIGO

Advanced LIGO

Higher 
power

(y scale: h/rt Hz)

Better 
isolation

Reduced 
thermal noise
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Advanced LIGO Subsystems

• Laser: 180 W prestabilised
Nd:YAG (from Laser Zentrum
Hannover)

• Suspensions: quadruple 
pendulum with silica monolithic 
final stage (from UK)

• Core Optics: 40 kg 34 cm x 20 
cm Hereaus 311 fused silica plus 
low loss (optical and mechanical)  
coatings 

• Seismic Isolation: 6 DOF active 
isolation for all suspended optics

• Interferometry: high and low 
power operation, use of signal 
recycling mirror, DC readout 
system

front-end
 output

 PZT

 BP

high-power laser
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Suspension Design for GW Detectors

• long baseline laser interferometry between freely 
suspended test masses
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Suspension Design for GW Detectors continued

• Fundamental requirements
• support the mirrors to 

minimise the effects of
•thermal noise in the 
suspensions
•seismic noise acting at the 
support point

• Technical requirements
• allow a means to damp the 

low frequency suspension 
resonances  (local control)

• allow a means to maintain arm 
lengths as required in the 
interferometer (global control)
(without adding additional 
noise)
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Thermal Noise
• Thermally excited vibrations of 

pendulum and violin modes of 
suspensions and of mirror 
substrates and coatings

• Apply fluctuation-dissipation 
theorem to find thermal motion

• To minimise:
• use low loss (high quality factor, 

Q) materials for mirror and 
suspension  – gives low thermal 
noise level off resonance              
-silica is a good choice

•loss angle ~ 2e-7, c.f. steel ~2e-4
•breaking stress can be larger than 
steel

• use thin, long ribbons to reduce 
effect of losses from bending

Monolithic fused silica suspensions have been pioneered in the GEO 600 detector: 
makes use of silicate bonding technique developed at Stanford for Gravity Probe B
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GEO Triple Pendulum Suspension

Silica fibres welded 
to ears

Ears silicate 
bonded to masses
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Development of Suspensions for Advanced LIGO

Above: detail of ear bonded to silica mass and ribbon 
(0.1 mm x 1 mm x 60 cm long) to be welded to ear

Left: lower 3 stages of suspension with fused silica 
ribbons between penultimate mass and mirror (both 
fused silica) 

Below: ear bonded to silica disk for strength tests, and 
interferogram of ears indicating good flatness

Mirror: 40 kg silica mass

ear

ribbon
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Seismic Noise

• Seismic noise limits sensitivity at low 
frequency  - “seismic wall”

• Typical seismic noise at “quiet” site at 10 Hz is 
~ few x 10-10 m/ √ Hz

• For Advanced LIGO more than 9 orders of 
magnitude of seismic isolation is required at 
10 Hz – target is 10-19 m/ √ Hz
Solution - use multiple stages of isolation

• Isolation required in vertical direction as well 
as horizontal due to cross-coupling effects 
including that due to curvature of Earth

• Ultimately Newtonian noise will limit low 
frequency performance: – LISA (interferometer 
in space) for low frequency detection

Advantage of double
over single pendulum, 
same overall length

Better 
isolation
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Seismic Isolation - From Initial to Advanced LIGO
active isolation 
platform - under 
development at 
Stanford

hydraulic external 
pre-isolator (HEPI) 
- developed at 
Stanford

quadruple 
pendulum

4 layer passive 
stack

single pendulum

coarse & fine 
actuators
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Advanced LIGO Quadruple Pendulum 
Suspension

Key design elements
• Monolithic final stage: 40 kg 

fused silica mirror on 4 fused 
silica ribbons for good thermal 
noise performance

• 4 stages for longitudinal seismic 
isolation plus 3 stages of blades 
for vertical isolation

• 6 degree of freedom damping 
(local control) at top mass for all 
low frequency modes (requires 
good mode coupling)

• Parallel reaction chain for quiet 
global control actuation: 
electrostatic at test mass, 
electromagnetic at upper stages 
(hierarchical)
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Prototypes for Suspension System

First article 
fused silica test 
mass: 

34 cm diam x 
20 cm thick

Prototype gold-coated face-plate  
for electrostatic actuation

Metal prototype suspension 
under test at Caltech
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• Continuing design and 
testing
• Design/production  of 

fibre/ribbon + ears
• design of support structure

• Evolution of prototypes 
• all-metal controls prototypes 

under test at MIT
• Noise prototype (with silica 

final stage) due for delivery to 
MIT March 2007 – test in 
conjunction with seismic 
isolation system

leading to final design

Suspensions: Ongoing and Future Work 
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Advanced LIGO Timeline

• Successful NSF baseline review (May/June 2006)
• Planned start of funding FY08 (Oct 2007)
• Planned start of installation 2010
• Planned operation from ~2014 

Large team effort
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The LIGO Community

• Scientific impetus, expertise, and 
development through the LIGO Scientific 
Collaboration (LSC)
• 500+ persons, 100+ graduate students, 40+ 

institutions
• International effort
• Especially strong coupling with German-UK GEO 

group, capital partnership for Advanced LIGO
• Advanced LIGO design, R&D, and fabrication 

spread among participants
• LIGO Laboratory leads, coordinates, takes 

responsibility for Observatories
• Continuing strong support from the NSF at 

all levels of effort – theory, R&D, operation of 
the Laboratory

• International network growing:
• GEO-600 (Germany-UK), ACIGA (Australia) –

LSC members
• VIRGO (Italy-France), TAMA (Japan) – MOUs

with LIGO
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Interim Upgrade - Enhanced LIGO
• Gap between end of current science run and start of installation of 

Advanced LIGO

• Enhanced LIGO: factor of ~ 2 improvement in sensitivity -> factor of 
~ 8 in event rate

• Incorporate some Advanced LIGO technology early: higher power 
laser (30 W) + suitable input optics, new readout scheme, more 
thermal compensation

• Increase probability of detection and gain experience of critical 
technologies

Timeline from LIGO: G060433
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Conclusion

• Gravitational wave detection is a key research area:           
Exciting times ahead!

Report from Interagency Working Group, Feb 2004
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