

LIGO-G060635-00-R

UV LED Charge Management Progress Report

Ke-Xun Sun

LIGO Charging Workgroup Telcon 9:00 am December 11, 2006

LIGO Charging Workgroup Telcon 12/12/2006

LSC_Charging_061210.ppt K. Sun

UV LED Lifetime Beats Mercury Lamp

- UV LED Emission Lifetime > 5,077 Hours
 - As of Dec. 1, 2006 (5 PM)
 - Power stability within measurement error (~5 %)
 - Fast modulation with 10% duty cycle
 - Compared with mercury lamp lifetime of 5000 hrs
- UV LED Spectral Stability
 - Central wavelength ~256 nm
 - No spectral shift observed in all three measurements (start, 1000 hrs, and 3000 hrs)

LIGO

UV LED Lifetime Experiment

LIGO Charging Workgroup Telcon 12/12/2006

LSC_Charging_061210.ppt K. Sun

UV LED Operated for AC Charge Management

UV LED Direct Readout

LIGO Charging Workgroup Telcon 12/12/2006

LSC_Charging_061210.ppt K. Sun

Relative Power Stability

Relative Spectral Stability

UV LED Charge Management Plan at Stanford

- UV LED system development
 - LISA /LIGO dual use
 - Must have flexible modulation capability
 - High power version for LIGO only
 - Supply the UV LED system to LIGO Labs
- Vacuum chamber commission and renovation
 - UV grade fused silica window
 - Gauges
- AC charge management system for LIGO proof mass charging/discharging
- Remote measurement of surface potential
- Substrate direct charge management
- Conductive coating charge management
- Modeling efforts will parallel

LIGO

High Vacuum Chamber for LIGO UV Experiment

- Vertical vacuum jar good for suspension
- Ion Pump
- 10-7 to 10-9 torr

8

LIGO Charging Workgroup Telcon 12/12/2006

UV Grade Fused Silica Transmission Good for LIGO Chamber Window

LIGO Charging Workgroup Telcon 12/12/2006

BK7 Glass Transmission Curve Cutoff at ~330 nm

LIGO Charging Workgroup Telcon 12/12/2006

LSC_Charging_061210.ppt K. Sun

Conductive Coating Patterns

LIGO Charging Workgroup Telcon 12/12/2006

UV Illumination Schemes for UV AC Charge Management

• Direct illumination

LIGO

- UV mercury lamp is routinely used for attachment removal
- UV LED has sufficient power for cw or pulsed direct illumination
- Need to make sure no solarization (tanning) effect

- Illumination on coatings
 - Thin Au coating on noncritical portions of test mass and suspension structure
 - Photoelectric effect on thin Au coating is common mechanism for photocathode
 - Higher throughput in charge control

Coordinating with LIGO Project

- Let us know what we can help
 - Gregg's and Charging List's emails very helpful
 - LIGO site configuration info
 - Items needed
 - Requirements
 - Schedule and test plan
 - Some LIGO funds?

LIGO

