Search for Gravitational-Wave Bursts (GWBs) Associated with Gamma-Ray Bursts (GRBs) Using LIGO Detectors

LIGO-G060663-00-Z

Isabel Leonor (for the LIGO Scientific Collaboration)
University of Oregon

Outline of GRB-GWB search

- search for short-duration gravitational-wave bursts (GWBs) coincident with gamma-ray bursts (GRBs)
- use GRB triggers observed by satellite experiments
 - Swift, HETE-2, INTEGRAL, IPN, Konus-Wind
 - include both "short" and "long" GRBs
- search 180 seconds of LIGO data surrounding each GRB trigger (on-source segment)
- waveforms of GWB signals associated with GRBs are not known
- use crosscorrelation of two interferometers (IFOs) to search for associated GW signal

$$crosscorr = \frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{j}^{2}} \sqrt{\sum_{k} y_{k}^{2}}}$$
 correlated signal in two IFOs \Rightarrow large crosscorr

- use crosscorrelation lengths of 25 ms and 100 ms to target short-duration GW bursts of durations ~1 ms to ~100 ms
- use bandwidth of 40 Hz to 2000 Hz

The GRB sample for LIGO S2/S3/S4 runs

- S2: 28 GRBs with at least double coincidence LIGO data
 - 24 for LHO 4km LHO 2km
 - 9 for LHO 4km LLO 4km
 - 9 for LHO 2km LLO 4km
- S3: 7 GRBs with at least double coincidence LIGO data
 - 7 for LHO 4km LHO 2km
 - O for LHO 4km LLO 4km
 - O for LHO 2km LLO 4km
- S4: 4 GRBs with at least double coincidence LIGO data
 - 4 for LHO 4km LHO 2km
 - 3 for LHO 4km LLO 4km
 - 3 for LHO 2km LLO 4km

IPN, HETE-2, INTEGRAL, Konus-Wind (pre-Swift)

> start of Swift era

59 LIGO on-source pairs analyzed

only well-localized GRBs considered for LHO – LLO search

Estimating probability of measured on-source largest crosscorr: Sample off-source distribution using 25-ms cc length

- apply search to off-source segments to obtain crosscorrelation distribution
- use time shifts to get enough statistics
- largest crosscorrelation found in on-source search indicated by black arrow
- probability is estimated using this distribution
- off-source crosscorrelation distribution is determined for each IFO pair for each GRB trigger

Results: Cumulative distribution of local probabilities 25-ms crosscorrelation length

- 59 entries -- includes all GRBs, all IFO pairs
- expected distribution of probabilities under null hypothesis is uniform from 0 to 1
- no loud event from any GRB
- perform statistical test on this distribution

Results: Cumulative distribution of local probabilities 100-ms crosscorrelation length

- 59 entries -- includes all GRBs, all IFO pairs
- expected distribution of probabilities under null hypothesis is uniform from 0 to 1
- no loud event from any GRB
- perform statistical test on this distribution

Statistical tests

- statistical search: search for weak signals which, individually, would not comprise a detection, but together could have a detectable cumulative effect on measured distributions
- binomial test: search local probability distribution for deviation from expected distribution
- rank-sum test: test if medians of on-source crosscorrelation distribution and off-source crosscorrelation distribution are consistent with each other

Result of tests: On-source and off-source crosscorrelation distributions are statistically consistent.

Null hypothesis cannot be rejected.

No GW signal seen from statistical search.

S2/S3/S4 h_{rss} 90% upper limits for sine-gaussians

- GW waveforms not known
- inject simulated sinegaussians into data to estimate search sensitivity
- use linear polarization
- take into account antenna response of interferometers
- \bullet S2 best \mathbf{h}_{rss} limit (250 Hz):
 - **❖ 2.5E-20 Hz**^{-1/2}
- S3 best h_{rss} limit (250 Hz):
 - ❖ 1.2E-20 Hz^{-1/2}
- S4 best h_{rss} limit (250 Hz):
 - ❖ 3.0E-21 Hz^{-1/2}

S5 GRB-GWB Search: Preliminary Results

- Goal: One year of coincident science run at LIGO-1 design sensitivity
- currently ongoing
- commenced November 4, 2005

The GRB sample for LIGO S5 run

- 53 GRB triggers in 5 months of LIGO S5 run (as of April 10, 2006)
 - most from Swift
 - 16 triple-IFO coincidence
 - 31 double-IFO coincidence
 - 6 short-duration GRBs
 - 11 GRBs with redshift
 - \star z = 6.6, farthest
 - z = 0.0331, nearest
- performed GW burst search on this sample using same pipeline
 - No loud events seen that are inconsistent with expected probability distribution

S5 GRB-GWB preliminary sensitivity: Upper limits on **h**_{rss} at 250 Hz

- ◆ 90% UL on h_{rss}
- Q = 8.9, f = 250 Hz
 sine-gaussian
- S5 best h_{rss} (so far):

1.5E-21 Hz-1/2

Relating h_{rss} sensitivity to an astrophysical quantity

Energy radiated by a source in gravitational waves:

$$E_{GW} \sim \frac{c^3}{G} D^2 f_c^2 h_{rss}^2$$

We might expect to be sensitive to GW bursts out to a distance of:

Summary

- We have performed a search for short-duration GW bursts associated with 39 GRBs detected by satellite experiments during dates of LIGO's S2, S3, and S4 runs
- We found no evidence for GW bursts associated with GRBs using this sample
- ❖ Using simulated sine-gaussian waveforms, we have estimated the search sensitivity and set 90% upper limits on the root-sum-square strain amplitude, with a best hrss limit for the S4 run of ≈3.0E-21 Hz^{-1/2} at 250 Hz
- We are using the same method to search for GW bursts associated with GRBs detected by Swift (mostly) and other satellite experiments during LIGO's ongoing S5 run
- The best S5 GRB-GWB sensitivity at 250 Hz, i.e. 90% h_{rss} upper limit, is ≈1.5E-21 Hz^{-1/2}