Effect of Temperature on Coating Thermal Noise in Advanced LIGO

Matt Abernathy Gregg Harry Flavio Travasso LIGO/MIT

G060670-00-R

Thermal Noise

- What is Thermal Noise?
- The effect of thermal noise on Advanced LIGO
 - Initial LIGO coatings: Silica/Tantala
 - NS/NS 155 Mpc BH/BH 675 Mpc
 - Our Best coatings so far: Titania doped Tantala
 - NS/NS 175 Mpc BH/BH 775 Mpc

Mirror heating in Advanced LIGO

- 180 W in adLIGO, 8 W in initial
- 1 MW in adLIGO, 20 kW Initial LIGO
- What does this mean for developers?
 - < 1 ppm of optical absorption in coatings</p>
 - 20 degrees above room temperatue operating point
- How does this effect coating thermal noise?

Coating lab

- Fluctuation-Dissipation
- Birefringence Sensor
 - -No touching
- Coating Samples

 -30 layers λ/4
 silica tantala
- Temperature
 Experiment

Results

- Loss Angle Increases with Temperature
- Effect Decreases with Frequency
 - More dramatic effect
- Change in sensitivity
 - <1% decrease in NS range

3-3. Loss angle of coating

NAO coating on t 1mm disk without annealing

- Japanese Results--Kazuhiro Yamamoto 2003
 - Shows no temperature effect below room temperature
 - Agrees with our results—loss angles appear to converge near room temperature

Further Comments

- As Always, more, better data points are most helpful
 - With a wider frequency range, we can start looking for mechanical loss mechanisms
 - Combine with low temperature data
 - Silica has understood loss mechanisms
 - Might be possible to develop understanding for tantala
 - Wider temperature range
 - Third generation detectors

