Gravitational Wave Astronomy

Gregory Harry Massachusetts Institute of Technology

April 25, 2006

Hobart and William Smith

Colleges

History of Astronomical Instruments

Optical Telescopes (c. 1600 to today)

Radio Telescopes (1932 to today)

γ ray, IR, UV, X ray etc Telescopes (c. 1960 to today)

Images of the Milky Way

All images are collected from electromagnetic waves

Primarily giving information about the temperature of source

- **a** 21-cm radio emission from atomic hydrogen gas.
- **b** Radio emission from carbon monoxide reveals molecular clouds.
- c Infrared (60–100 μm) emission from interstellar dust.
- d Infrared (1–4 μm) emission from stars that penetrates most interstellar material.
- e Visible light emitted by stars is scattered and absorbed by dust.
- f X-ray emission from hot gas bubbles (diffuse blobs) and Xray binaries (pointlike sources).
- g Gamma-ray emission from collisions of cosmic rays with atomic nuclei in interstellar clouds.

Is there a way to view the universe that gives information other than what is obtained electromagnetically?

Gravitational Waves

Gravitational waves are ripples in space and time coming from the motion of large masses

Provide information about the mass distribution of the source Fundamentally different and complementary to view with light

Outline

Theory of gravitation
Einstein's General Theory of Relativity
Gravitational waves

Detection of gravitational waves

Bar detectors

Laser Interferometer Gravitational-wave Observatory (LIGO)

Interferometry

Noise sources

Sources of gravitational waves

Binary black holes and/or neutron stars

Asymmetric pulsars

Background from the Big Bang

Current results from LIGO

Special Theory of Relativity

The speed of light c is the same for all observers Requires time and space to change with speed

$$t' = \frac{\left(t - \frac{v}{c^2} x\right)}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$$

$$x' = \frac{(x - vt)}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$$

Information cannot travel faster than the c

A moving charge does not change the electric field around it instantaneously, but the effect propagates at c

Similarly with a moving mass, the effect on the surrounding gravitational field propagates out at c

This propagation is a gravitational wave

General Theory of Relativity

Gravity is indistinguishable from acceleration

Gravity is the experience of particles moving along the shortest paths through curved spacetime

Mass is what tells spacetime how much to curve

The Einstein Equation

$$G_{\mu\nu} = 8\pi T_{\mu\nu}$$

G_{μν} describes the gravitational field T_{μν} describes the mass/energy density

Astronomical Effects of Curvature

Einstein Cross

Gravitational Lensing
The propagation of light follows the curvature of spacetime

If a massive object (galaxy, etc.) is lined up with a light source, can see multiple images

Einstein Ring

Expansion of the Universe
The universe is expanding - Big Bang

Rate seems to be accelerating, which would mean strange matter causing unusual curvature

May require addition to the Einstein Equation

Indirect Observation of Gravitational Waves

PSR 1913+16 orbital change Black dots are observed data Dark line is theoretical prediction Binary Neutron Star System
PSR 1913+16 discovered by R. Hulse
and J. Taylor

System has been observed for over 25 years using Arecibo radio telescope

Orbit is shrinking by a few millimeters every year

Decrease in orbit in very good agreement with gravitational wave emission predicted by General Theory of Relativity

Waves from PSR1913+16 will enter LIGO bandwidth in 300 million years

Effect of Gravitational Waves on Matter

A grid of freely floating masses

A gravitational wave passing moves all masses

Contract in one direction, expand in the perpendicular direction

This is different than the effect of an electromagnetic wave

Electromagnetic Wave

Gravitational Wave

Direct Detection with Interferometer

Direct Detection with Interferometer

Interferometery

Laser goes down two perpendicular paths

Returning beams are combined on a

photodiode for detection

Constructive and destructive interference

Dark and bright fringes

If path lengths down arms is the same -> constructive interference
Peaks and troughs of light waves together

If path lengths are different -> destructive interference
Peaks and troughs of light waves cancel out

Laser Interferometer Gravitational-wave Observatory

LIGO Livingston Louisiana

LIGO Hanford Washington

LIGO Vacuum Chambers

- Two 4 km and one 2 km long interferometers
- Two sites in the US, Louisiana and Washington
- Fabry-Perot arms to store laser power
- High precision mirrors, 10 kg in mass
- Whole optical path enclosed in vacuum
- Sensitive to strains around h = 10-21
- $\Delta L = h L \approx 10^{-18} \text{ m}$: sub-nuclear size

Worldwide Network of Observatories

- Increase detection confidence
- Determine polarization and source location
- Verify speed is c
- Try new and different technologies

Bar detectors in Louisiana and Italy

Noise in LIGO

Current LIGO noise is very close to design goal

Some excess around 30 Hz

Total sensitivity currently exceeds goal

Noise determines sensitivity
Seismic noise at low frequency f < 40 Hz
Thermal noise at intermediate
frequencies 40 Hz < f < 150 Hz
Laser shot noise at high frequency
f > 150 Hz

Advanced LIGO

Seismic noise removed down to 10 Hz

Improved mirror materials for lower thermal noise

Higher laser power to reduce shot noise, causes radiation pressure

Advanced LIGO Configuration

Signal Recycling
Additional mirror at output
allows for tuning of sensitivity at
different frequencies

Laser Interferometer Space-based Antenna

LISA
Interferometric detector in solar orbit

Three spacecraft with two lasers each

Test masses floating freely in space

LISA

Sensitive at lower frequencies than LIGO (1-100 milliHertz)

More signals at lower frequency

Limited by confusion of sources at some frequencies

Direct Detection with Resonant Mass Detectors

Weber and bar in Maryland

Early 1960s, Joseph Weber first suggests gravitational waves could be directly detected

Built room temperature aluminum bar instrumented with strain sensors

Have limited sensitivity and frequency

response

From 1980s to today, cryogenic bars in vacuum with better sensitivity were built

1990s spherical detectors were analyzed

Now have prototype spheres being built

miniGRAIL in Leiden NL

Sources of Gravitational Waves

Categorization of Gravitational Wave Sources

	Modeling	Modeled	Unmodeled
Duration			
Short		Compact Body Inspirals (neutron stars, black holes)	Bursts (supernova, γ ray bursts, etc.)
Long		Asymmetric Pulsars (surface bumps, deformation from magnetic fields, etc.)	Stochastic Background (Big Bang, cacophony of other sources, etc.)

Compact Body Inspiral Sources

Binary black holes, neutron stars, or one of each circling in on each other

Similar to Hulse-Taylor system, but further along in their evolution

Essentially two point masses only interacting with each other, so possible to model using General Theory of Relativity

Makes characteristic "chirp" waveform, with both frequency and amplitude increasing with time

Chirp waveform

Burst Sources

Expected from catastrophic events involving roughly solar-mass (1-100 M_o) compact objects

Sources typically not well understood and therefore difficult to detect

Supernova 1987A Rings

Hubble Space Telescope
Wide Field Planetary Camera 2

Untriggered
Not observed core collapse supernova
Accretion onto black holes
Mergers of black holes
and/or neutron stars

Cusps in cosmic strings

TriggeredVisible core collapse supernova
γ-ray bursts

Network of cosmic strings

γ Ray Bursts

Bright bursts of gamma rays
at cosmological distances
rate of about 1/day
last about 1ms -100 s

Long bursts (>2 seconds)
beamed, only a few
degrees wide
about 1/year within 100 Mpc
associated with "hypernovae"
core collapse supernova
forming a black hole

Short bursts (< 2 seconds)

Binary neutron star and/or

black hole inspirals (?)

Seen by HETE to be in edges of
galaxies

Strongly relativistic - high gravity, dense matter

Likely to produce gravitational waves

Details of waves will tell about progenitors

Hypernova (conception)

Stochastic Sources

Cosmological background from Big Bang
Similar to cosmic microwave background

Astrophysical background from unresolved sources
Distant inspirals, mergers, supernova, etc

Cosmic microwave background

Background of black hole ringdowns

Cosmological Stochastic Sources

Numerous theories about what to expect from Big Bang Some testable with LIGO

Periodic Sources

Nearly monochromatic continuous sources of gravitational waves from spinning neutron stars

Spin precession (f_{rotational})

Oscillation (4/3 f_{rotational})

Distortions of surface (2 f_{rotational})

Signal is modulated by Doppler shift from motion of Earth, Sun, and source

Search known pulsars, so know

Rotation frequency

Position on sky

Spin down rate

Distance

Also search whole sky for unknown pulsars

Need a lot of computer power

LIGO Science Runs

Have collected data in 5 separate science runs with LIGO

\$1 2 weeks 2002 \$2 8 weeks 2003 \$3 9 weeks 2004 \$4 4 weeks 2005 \$5 23+ weeks 2006

Goal of S5 is to collect a full year of data from all three interferometers

Inspiral Searches

Template based search
Compare expected signal versus data
Get maximum signal-to-noise ratio

Neutron Star Binary Results

S2 Neutron Star Binary Results

Neutron Star Binary with Noise

S3 search complete Under review by LIGO 0.09 years of data about 3 Milky Way like galaxies

Black points are number of events at each signal-to-noise ratio

Gray bars what is expected from noise

S4 search complete Under review by LIGO 0.05 years of data about 24 Milky Way like galaxies

S5 Neutron Star Binary Results

Maximum range each interferometer could observe a binary neutron star inspiral

Black Hole Binary Results

S2 Black Hole Binary Results

signal-to-noise ratio squared

Black points are number of events at each signal-to-noise ratio

Gray bars what is expected from noise

Using two 5 M_o black holes

S3 search complete
Under review by LIGO
0.09 years of data
about 5 Milky Way like
galaxies

S4 search complete
Under review by LIGO
0.05 years of data
about 150 Milky Way like
galaxies

Burst Source Searches

Two main types of burst searches

Untriggered: Scan all data, looking for excess power Most robust way to look for bursts
 Triggered: Scan data around time of known event like γ ray burst of supernova
 Use knowledge of position on sky

Always make minimal assumptions about the signal. Be open to the unexpected.

Burst Results

No gravitational wave bursts detected to date Set limits on rates and strain amplitudes

Stochastic Search

$$S_{\rm gw}(f) = \frac{3H_0^2}{10\pi^2} f^{-3}\Omega_{\rm gw}(f)$$

Cross correlation of data from two interferometers

Best results from two Hanford detectors

Colocation allows for higher frequency

Need to be sure correlations are not local noise

Longer time of correlation also increases sensitivity

Stochastic signal strength parametrized as fraction of closure density of universe Ω

Arguments from big bang nucleosynthesis mean Ω must be less than 10^{-5}

Stochastic Results

S4 results approaching astrophysically interesting limits Full year of data at design sensitivity will give limit below Ω <10⁻⁵

Continuous Wave Search

Search known pulsars
Use known frequencies, positions, ringdown times, etc.

Search whole sky
Need a lot of computer power

Can use template based search
Basically sine waves, with
modifications for Doppler shift,
and antenna sensitivity

Continuous Wave Results

32 known isolated pulsars, 44 in binaries, 30 in globular clusters

S2 Pulsar Results

S5 Sensitivity

Lowest ellipticity upper limit: PSR J2124-3358 ($f_{gw} = 405.6Hz$, r = 0.25kpc) ellipticity = $4.0x10^{-7}$

Einstein @ Home

All sky, all frequency search for pulsars Computationally limited, so uses distributed computing

Einstein@Home

- GEO-600 Hannover
- LIGO Hanford
- LIGO Livingston
- Current search point
- Current search coordinates
- Known pulsars
- Known supernovae remnants
- User: David Hammer
 Total Credit 15268 70
 Host Credit 1110.12
 Team: Einstein@UWM
- User name
- User's total credits

Percent Done: 6.41%

- Machine's total credits
- Team name
- Current work % complete

Conclusions

Gravitational wave astronomy will open a new window on the universe

Indirect evidence has confirmed existence of gravitational waves

Attempts at direct detection have been ongoing for over 30 years

LIGO is now setting astrophysically interesting limits on multiple types of gravitational waves

First direct detection of a gravitational wave could happen any day

Models of Stochastic Sources

Gravitational Waves

Distance along a path depends on the curvature

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

For small curvature, the effect of gravity can be described as a perturbation from normal flat space

h is a strain, describes how much a length changes by: $h = \Delta I / I$

Using the Einstein Equation, this perturbation obeys a wave equation
$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial}{\partial t^2} \right) h_{\mu\nu} = 0$$

Generation of Gravitational Waves

Changes in the mass/energy density $T_{\mu\nu}$ create a corresponding change in the gravity $G_{\mu\nu}$

$$h_{ij} = 2 G/(r c^4) d^2I_{ij}/dt^2$$

h_{ij} is perturbation to spacetime r is the distance from the source l_{ij} is the reduced quadrupole moment of source

The source must not be spherically symmetric

- Makes predicting strength of supernova and pulsars difficult
- Dense object in binary systems (black holes, neutron stars) ideal

Inspiral, Merger, and Ringdown Sources

Credits: Kip Thorne

Inspiral phase well modelled

Merger very dependant on properties of object

Neutron star - depends on equation of state of nuclear matter

Black holes - highly nonlinear gravitational fields

Ringdown

Only if black hole is formed Well modelled Exponentially decaying sine

Combined inspiral and burst source