

LIGO: The Search for the Gravitational Wave Sky

- status, physics, results, prospects

Ray Frey, University of Oregon for the LIGO Scientific Collaboration

C2CR07, Granlibakken

No detections can

be reported (yet).

- Introduction (brief)
- Current status
- Observational results, selected
- Prospects: enhanced and Advanced LIGO; toward a worldwide network of GW observatories

Laser Interferometer Gravitational-wave Observatory

- GW emission requires time varying quadrupole moment of mass distribution
- Strain estimate (h = $\delta L/L$):

$$h \sim \left(\frac{GM}{c^2}\right) \left(\frac{v^2}{c^2}\right) \frac{1}{r}$$

Ø	

For $1M_{\odot} \Rightarrow R_s = 2GM_{\odot}/c^2 = 3$ km If $v \approx c$, then at r = 15 Mpc:

$$h\sim 3 imes 10^{-21}$$

R Frey C2CR07

GW Interferometer Principle

GW strain: $h = \delta L/L$

- Long baseline 4 km (h = $\delta L/L$) For h $\approx 10^{-21}$, L ≈ 1 km, then $\delta L \approx 10^{-18}$ m $\Rightarrow \delta \Phi \approx 10^{-9} \, \text{rad}$ required phase sensitivity
- Fabry-Perot Cavity storage time ~1 ms (~100 bounces) ٠
- High laser power ($\lambda = 1 \mu m$) ٠
 - Power recycling (x30)
 - Cavities: Few watts in; few kW in arms

What Limits Sensitivity of the Interferometers?

- Seismic noise & vibration limit at low frequencies
- Thermal noise of suspensions and test masses
- Quantum nature of light (Shot Noise) limits at high frequencies
- Limitations of facilities much lower

Science runs and sensitivity

Astrophysical Signal Types

Spin axis precesse

with frequency f.

- Compact binary inspiral: "chirps"
 - NS-NS, BH-BH waveforms are well described
 - search technique: matched templates
- Supernovae / GRBs: "bursts"
 - "unmodelled" search
 - triggered searches
- Pulsars in our galaxy: "periodic"
 - observe known neutron stars (frequency, doppler shift)
 - all sky search (computing challenge)
 - Low-mass X-ray binaries
- Cosmological "stochastic background"

Coalescing Compact Binaries

NS-NS, BH-BH, (BH-NS) binary systems

10		NS/BH	Binary Black Holes Early S5: Mass-dependent horizon Peak for H1: 130Mpc ∼ 25M _☉
onent mass m₂ [M _☉] ⊾		Binary Neutron Stars Early S5 BNS horizon: Hanford-4km: 25 Mpc Livingston-4km: 21 Mpc Hanford-2km: 10Mpc Was 1.5 Mpc in S2	NS/BH
Compo O.1	Primordial Black Hole Binaries / MACHOs S4 reach: 3 Milky Way-like halos S5 in progress	BNS horizon: distance of optimally oriented and located 1.4-1.4 M_{\odot} binary at SNR=8	
0.1 1 Component mass m ₁ [M _{\odot}] ³ 10			

Rate/year/L₁₀ vs. binary total mass ($L_{10} = 10^{10} L_{sun}$ (1 Milky Way = 1.7 L_{10})

- 3 months of data analyzed- no signals seen
- For 1.4-1.4 M_o binaries, ~ 200 MWEGs in range
- For 5-5 M_{o} binaries, ~ 1000 MWEGs in range

Burst Search (All-sky) Results and Prospects

14

Gravitational Radiation and Gamma-ray Bursts

Search Method: GWs associated with GRBs

No significant detections in S2, S3, S4 \Rightarrow strain (h_{rss}) limits

to be submitted to PRD

Search for known pulsars - preliminary

Relic GWs: Results and Prospects

Global network of interferometers

The Future: Enhanced and Advanced LIGO

Advanced LIGO reach (example)

NS-NS sources ~(h sensitivity)^{2.7}

h sensitivity will improve by ≈ 10 , with improved bandwidth

<u>Bursts</u>

- All-sky untriggered searches:
 - S1 PRD 69, 102001 (2004)
 - S2 PRD 72, 062001 (2005) ; LIGO+TAMA PRD 72, 122004 (2005)
 - S3 CQG 23, S29-S39 (2006)
 - S4 to be submitted 3/07
- GRB-GW searches:
 - GRB030329 PRD 72, 042002 (2005) ;
 - S2,S3,S4 to be submitted to PRD 3/07
- Search for quasi-periodic GWs from SGR 1806-20 following record gamma-ray flare of Dec 27, 2004 - to be submitted 3/07
- Cosmic (super-)string GW search (S5) in preparation

Stochastic

- S1 PRD 69, 122004 (2004)
- S3 PRL 95, 221101 (2005)
- S4 submitted to ApJ

Pulsars

- Searches: S1 PRD 69, 082004 (2004);
- S2 known pulsar search PRL 94, 181103 (2005)
- S2 coherent search submitted to PRD
- S2 Hough transform search PRD 72, 102004 (2005)
- S3/S4 known pulsar search to be submitted 3/07

Inspirals/coalescences

- NS-NS searches:
 - S1 PRD 69, 122001 (2004)
 - S2 PRD 72, 082001 (2005)
 - S3/S4 in preparation
- S2 MACHO search PRD 72, 082002 (2005)
- S2 LIGO+ TAMA PRD 73, 102002 (2006)
- S2 BH-BH search PRD 73, 062001 (2006)

- LIGO is now a powerful scientific instrument with "reasonable" sensitivity to astrophysical GW sources
 - Analysis groups and methods have reached a mature level with a good publication record
- Now it is up to nature...

- The scientific collaboration (LSC) is strong and prospects are excellent for advancing GW science through the next decade
 - Advanced LIGO is on track
 - Future ground-based GW science will be based on a global network of sensitive interferometers (LIGO, GEO, Virgo, ...)