

Generation of squeezed states for Gravitational Wave detectors

Simon Chelkowski, Henning Vahlbruch, Roman Schnabel and Karsten Danzmann

Albert-Einstein-Institut Hannover, Max-Planck-Institut für Gravitationsphysik and Universität Hannover

LIGO-G070056-00-Z

- Quantum Noise in an Interferometer
 - Frequency dependent squeezed light
 - GEO HF upgrade possibilities
- Low Frequency Squeezing

Quantum Noise inside Interferometers

The GEO600 Gravitational Wave Detector

Reducing the Quantum Noise

Squeezed Vacuum Interaction with a cavity

GEO 600 with Squeezed Vacuum and Filter Cavity

SC GEO 600 with Squeezed Vacuum and Filter Cavity

Π

GEO HF: Detuned Signal Recycling power-Nd:YAG 600m recycling LASER mirror 10⁻²⁰ — GEO Design, 7kW ICP signal-recycling squeezed mirror GEO HF, 70kW ICP, rs=0.88 vacuum noise filter cavity squeezed vacuum noise + signal

LSC GEO HF: Tuned Signal Recycling

Low frequency squeezing

SC OPA – Optical Parametric Amplification

- hemilithic cavity
- MgO:LiNbO₃ crystal as nonlinear material
- strong interaction between Seed- und Pump
- fractions in phase get amplified

Seed field is a control field

Setup for low frequency squeezing

Setup for low frequency squeezing

System II

Homodyne angle θ

Homodyne

Detector

Spectrum Analyzer

Vo + 1.4 GHz

50/50

3

s-pol, vo

squeezed

local oscillator

Chelkowski et al., accepted by PRA (2007)]

Measured vacuum noise

Measured squeezed vacuum noise

Measured vacuum noise

Measured vacuum noise

 $_S($

•We understand the quantum behaviour of Interferometers

Low frequency squeezed vacuum can be stably generated

•More than 6dB of squeezing available

•Frequency dependent light eventually not needed for GEO600

The end