

Output Modecleaner (OMC) Suspension Design

Norna A Robertson
Caltech and University of Glasgow

For the OMC suspension design team

LSC meeting, Baton Rouge 22nd March 2007

G070062-00-R

Design Team

- Rich Abbott
- Dennis Coyne
- Chris Echols
- Peter Fritschel
- Jay Heefner
- Vuk Mandic
- Norna Robertson
- Janeen Romie
- Calum Torrie
- Sam Waldman

+ Chris Cueva (Stanford summer student 2006)

OMC Suspension Design Specifications/Requirements

• Major features:

Property	Value/Description
Baseplate (optical bench): mass, size, material, first internal mode	6 kg, 450 x 150 x 38 mm, fused silica or lightweighted aluminium, >1000Hz
Isolation	Double pendulum with blades Steel wire suspension
Pendulum solid-body frequencies	0.8 – 2 Hz (guideline)
Damping	Active, 6 DOF Use OSEMS developed for quad (0.7 mm pk-pk, 2.05 N/A)
Support Structure	First resonance >150 Hz, footprint as small as practical
Wiring from baseplate	Routed via top mass to structure Preamps mounted on baseplate
Range and noise requirements for coil drivers (to give +/- 0.5 mm)	Current range ~ 9 e-2 A Ratio range to noise ~ 8e7 √Hz

OMC Suspension Conceptual Design

 Double pendulum suspension with two stages of blade springs

> Damping can be applied at the upper mass and design can proceed without detailed knowledge of bench layout

- » Static adjustments for pitch, yaw and roll (as needed) can be incorporated at upper mass
- » Uncertainty in the required isolation argues for the additional isolation provided by the double pendulum
- » Builds on GEO experience with multiple pendulums

advancedligo OMC Suspension Parameters

- Pendulum lengths: 25 cm at each stage
- Masses: 3 kg, 6 kg (+/- 10%)
- Blades: two supporting upper mass, 4 at upper mass supporting lower mass
 - Inclusion of second set of blades reduces highest vertical pitch and roll modes to below 10 Hz
- OSEM arrangement: 3 on top for vertical pitch and roll, two on front for longitudinal and yaw, one on side for transverse
- Optical bench: optics and diodes mounted on lower side (upper side known as "dark side")
 - This reduces interference between suspension wires and optical beams
- First assembly will use aluminium bench, final assembly - silica bench
- Choice of masses allowed use of aspects of input modecleaner suspension design (a triple and parts of the upper mass.

Some Design Choices

Mass of optical bench

- » Original concept: vacuum compatible optical table 0.5 x 0.5mm (approx 40 kg)
- Solution States Seems of the Control of the Cont
 - Need to develop method to attach optics: UV epoxy currently baseline, silicate bonding as for LISA optical bench is fallback, discussed with Glasgow group
 - Need to develop method to attach suspension wires (more on this later)

Two stages of blades versus one

- » Takes highest vertical, roll and pitch modes from 30 to 75 Hz range to 4 to 9 Hz range
 - Removes from GW band
 - All modes can be easily damped

Positioning of wire attachments

- » Moved from outer edges of bench to inside bench
- » Takes highest pitch mode from ~9 Hz to ~ 4 Hz
- » Eases design of filtering to cope with sensor noise
- » More challenging for design of wire attachment

Use of eddy current damping at upper mass

- » Considered for damping high frequency modes when only one set of blades
- » Coupling to ambient magnetic fields does not compromise isolation
- Not currently in baseline need OSEMS for alignment control anyway

advancedligo Wire Attachment to Optical Bench

Several ideas explored

- » Pocket cut out of glass and rods inserted through holes from side
 - Allows use of two loops rather than four wires, eases installation and removal of bench
 - More challenging for manufacture of glass bench

» Through holes in glass with sleeve and clamp

This is work in progress

Support Structure

- The support structure is made of welded aluminium
- Design similar to the top section of the quad support structure
 - » known to have high resonant frequencies
 - » reduces design effort
- Problems with achieving full penetration welds: several options investigated
 - Current option: holes cut in legs where join to base to allow welding from both sides and not at corner – will be strengthened with plates
 - » Possible future option use stainless steel
 - » Collaborating with team in UK building quad structure

Gusset weld – OK, butt weld not OK

Butt weld - not OK

advancedligo Finite Element Analysis (ANSYS)

Structure

Optical Bench

1st mode (transverse) 180 Hz

2nd mode (longitudinal) 190 Hz

First mode ~ 1100 Hz

c.f. requirement >150 Hz

c.f. requirement >1000 Hz

Wiring Plans

 Analysis suggests that wires taken directly from optical bench to structure may compromise isolation: route wires via upper mass.

Expected performance

Pendulum resonant frequencies (Hz):

» longitudinal and transverse: 0.74, 2.4

» vertical: 1.2, 4.5

» pitch: 0.59, 3.8

» yaw: 0.52, 3.36

» roll: 0.80, 6.9

Isolation at 10 Hz (with damping time ~10 secs)

» Longitudinal: 4.5 x 10^-4

» Vertical: 3.9 x 10^-3

(Note – above numbers are approximate, lower mass currently modelled as simple box shape, and some design details are still being finalised)

Transfer Functions and Impulse Responses

Progress and Schedule

- Design was reviewed in Nov and Dec 2006 (R Adhikari, D Shoemaker, M Zucker).
- Blades (spares from input modecleaner) characterised and chosen and other useful spare parts (clamps etc) identified Jan/Feb 2007
- Production of parts is currently underway, delivery now through early April 2007
- First (dirty) assembly and testing of suspension with an Al dummy bench at Caltech April/May 2007.
- Preliminary Design Review (suspension) June 2007
- Fabrication of 2nd unit start after PDR
- Glass bench will be added and further tests carried out (led by ISC team). Optics and bench delivery due early July 2007
 - » Assembly and test likely to be at Caltech (not LASTI as previously planned).
- Rework of first unit as needed after PDR or further testing
- Delivery of first unit (cleaned and baked) to meet start of OMC commissioning currently scheduled for Nov 2007