Improving Advanced LIGO sensitivity using a local readout scheme

<u>Henning Rehbein</u>, Helge Müller-Ebhardt, Kentaro Somiya, Chao Li, Roman Schnabel, Karsten Danzmann, Yanbei Chen

> Max-Planck-Institut für Gravitationsphysik (AEI) Institut für Gravitationsphysik, Leibniz Universität Hannover

Dynamics of Single Cavity

Equations of motion of suspended mirror

Monitoring End-Mirror Displacement

Radiation pressure induced position fluctuations of the ETM caused by the main cavity field are measured by a reference cavity.

Detection strategy:

- -Output b^{out} can be feed back to ETM
- Optimal noise spectral density can by computed form outputs a^{out} and b^{out}

Heidmann et. al. [quant-ph/0311167]

Detuned Cavity

Detuning the cavity by ϕ modifies equation of motion:

Detuned SR Interferometer

- <u>Remember:</u> Detuned SR Interferometer is equivalent to single detuned cavity
- Detuning is moved to signal recycling cavity
- Additional resonances:
 - optical resonance
 - optomechanical resonance
- Gain of sensitivity at the two resonances
- Loss of sensitivity below optomechanical resonance frequency

Signal and Noise Transfer

Mainly the rigid optical spring suppresses the response of the interferometer's differential mode to GW waves \rightarrow cf. optical bar

[Braginski, Gorodetsky & Khalili 1997; Braginski & Khalili 1999; Khalili 2002] motion x

LIGO-G070112-00-Z

AIC, LSC / Virgo Collaboration Meeting, 2007, LLO

motion x

Signal and Noise Transfer

Radiation pressure noise of SR interferometer is also suppressed by the optical spring

Further suppression of radiation pressure noise by a local meter is not necessary for detuned SR interferometers! But...

Local Readout Scheme (1)

- Reading out the ITMs' motion by injection of second laser beam
- Additional laser beam should not resonate in arm cavities
- At frequencies below optomechanical resonance the local meter views bar formed by rigidly connected ITM and ETM
- Effective mass sensed by local meter is twice that of ITM or ETM (assuming equal masses)
- Recover low-frequency response
 of detuned SR interferometer
- Extension to stand-alone optical bar or SR schemes

Local Readout Scheme (2)

Symbol	Physical meaning	Value	
m	Single mirror mass	40 kg	
m _{BS}	BS mass	40 kg	
ω ₀ ⁽¹⁾	Light frequency 1 st laser	1.8x10 ¹⁵ 1/s	
P ⁽¹⁾	Circulating power 1st carrier	100-800 kW	
L ⁽¹⁾	Large scale ifo arm length	4 km	
ρ_{PR}	PRM reflectivity	(0.5) ^{1/2}	
ф	Detuning for 1 st carrier	0-π	
ρ _{SR}	SRM reflectivity	(0.93) ^{1/2}	
γ ₀	Cavity half bandwidth 1st carrier	2π 15 Hz	
ζ(1)	Det. angle for 1 st carrier	0-π	
ω ₀ ⁽²⁾	Light frequency 2 nd laser	1.8x10 ¹⁵ 1/s	
P ⁽²⁾	Circulating power 2nd carrier	0-16 kW	
L ⁽²⁾	Local meter arm length	15 m	
λ ⁽²⁾	Detuning for 2 nd carrier	0 Hz	
٤ ⁽²⁾	Cavity half bandwidth 2 nd carrier	2 π 4 kHz	
ζ(2)	Det. angle for 2 nd carrier	0	

LIGO-G070112-00-Z

Combined Sensitivity

The output can be written in the compact form

$$\hat{y}^{(1)} = \vec{n}_1^T \ \vec{\nu} + s_1 \ h \text{ and } \hat{y}^{(2)} = \vec{n}_2^T \ \vec{\nu} + s_2 \ h$$

and the combined output is given by

$$\hat{y} = K_1(\Omega) \; \hat{y}^{(1)} + K_2(\Omega) \; \hat{y}^{(2)}$$

with filter functions $K_1(\Omega)$ and $K_2(\Omega)$. The resulting total noise spectral density

$$S_{h}(\Omega) = \frac{\begin{pmatrix} K_{1}(\Omega) & K_{2}(\Omega) \end{pmatrix} \begin{pmatrix} \vec{n}_{1}^{T}\vec{n}_{1}^{*} & \vec{n}_{1}^{T}\vec{n}_{2}^{*} \\ \vec{n}_{2}^{T}\vec{n}_{1}^{*} & \vec{n}_{2}^{T}\vec{n}_{2}^{*} \end{pmatrix} \begin{pmatrix} K_{1}^{*}(\Omega) \\ K_{2}^{*}(\Omega) \end{pmatrix}}{\begin{pmatrix} K_{1}(\Omega) & K_{2}(\Omega) \end{pmatrix} \begin{pmatrix} s_{1}s_{1}^{*} & s_{1}s_{2}^{*} \\ s_{2}s_{1}^{*} & s_{2}s_{2}^{*} \end{pmatrix} \begin{pmatrix} K_{1}^{*}(\Omega) \\ K_{2}^{*}(\Omega) \end{pmatrix}}$$

has to be minimized.

 $\vec{\nu}^T = (a_1^{(1)}, a_2^{(1)}, a_1^{(2)}, a_2^{(2)}, \hat{\xi}_{\text{ITM}}^{\text{cl}}, \hat{\xi}_{\text{ETM}}^{\text{cl}}, \hat{\xi}_{\text{BS}}^{\text{cl}})$

LIGO-G070112-00-Z

Filter Functions

- Optimal filter functions

 minimize noise spectral density
 - are close to step functions
- Signal transfer function of large scale interferometer below optomechanical resonance decreases rapidly but...
- ...signal transfer of local meter stays constant

Combination of locally sensed optical bar scheme and SR interferometer

LIGO-G070112-00-Z

Noise Spectral Density

-0

Astrophysical Optimization

- Optimization with respect to binary systems with total mass M and reduced mass μ
- Observable distance for a given SNR ρ_0 and averaged binary orientation has to be maximized:

$$D = \sqrt{\frac{2}{15}} \frac{G^{5/6} \mu^{1/2} M^{1/3}}{\pi^{2/3} c^{3/2} \rho_0} \sqrt{\int_{f_{\min}}^{f_{\max}} \mathrm{d}f} \ \frac{f^{-7/6}}{S_h(f)}$$

- Classical noise cutoff: $f_{min} \sim 7 \text{ Hz}$
- Upper cutoff given by GW frequency at last stable circular orbit of the binary: f_{max}^{\sim} 4400Hz (M / M)

Comparison of Event Rates

Noise Spectral Densities with Classical Noise

M/M	opt. parameter with local meter			opt. parameter without local meter			
	P ⁽¹⁾ [kW]	φ [rad]	ζ ⁽¹⁾ [rad]	P ⁽¹⁾ [kW]	φ [rad]	$\zeta^{(1)}$ [rad]	improv.
2.8	800	0.48 π	0.7 π	800	0.48 π	0.49 π	29%
20	450	0.47 π	0.58 π	500	0.48 π	0.48 π	28%
40	150	0.45 π	0.43 π	150	0.45 π	0.46 π	33%
120	100	0.46 π	0.32 π	100	0.47 π	0.41 π	42%

LIGO-G070112-00-Z

Noise Spectral Densities with Classical Noise

M/M	opt. parameter with local meter			opt. parameter without local meter			
	P ⁽¹⁾ [kW]	φ [rad]	ζ ⁽¹⁾ [rad]	P ⁽¹⁾ [kW]	φ [rad]	$\zeta^{(1)}$ [rad]	improv.
2.8	800	0.48 π	0.7 π	800	0.48 π	0.49 π	29%
20	450	0.47 π	0.58 π	500	0.48 π	0.48 π	28%
40	150	0.45 π	0.43 π	150	0.45 π	0.46 π	33%
120	100	0.46 π	0.32 π	100	0.47 π	0.41 π	42%

Noise Spectral Densities with Classical Noise

M/M	opt. parameter with local meter			opt. parameter without local meter			
	P ⁽¹⁾ [kW]	φ [rad]	ζ ⁽¹⁾ [rad]	P ⁽¹⁾ [kW]	φ [rad]	$\zeta^{(1)}$ [rad]	improv.
2.8	800	0.48 π	0.7 π	800	0.48 π	0.49 π	29%
20	450	0.47 π	0.58 π	500	0.48 π	0.48 π	28%
40	150	0.45 π	0.43 π	150	0.45 π	0.46 π	33%
120	100	0.46 π	0.32 π	100	0.47 π	0.41 π	42%

Conclusion and Outlook

- Locally reading out ITMs' motion by second laser beam improves sensitivity significantly
- Maintaining or improving sensitivity of Advanced LIGO even for reduced power in arm cavities

- Combinable with other QND schemes, e.g. injection
 of squeezed vacuum
- Our proposed upgrade for Advanced LIGO should be realizable with low effort

BS motion is

- only important in the local meter
- negligible for the large scale interferometer due to arm cavities
- also driven by bright port laser input fields
 [Harms et. al. 2002]

Classical noise

IGO-G070112-00-Z

- modeled by operators ξ^{cl}_i, i 5 {ITM,ETM,BS}
- contributions are uncorrelated
- each mirror is subject to fourth of the spectrum generally expected for whole differential mode

Implementation

- RF sidebands (1% of carrier light) already probe ITM in planed Advanced LIGO
- For our scheme a second laser beam is needed with the same power as the first laser (125 W).
- Polarized light or different frequencies can be used
- Frequency of second laser must be chosen such that it does not resonate in the arm cavities
- Circumvent shot-noise-limited sensitivity of large scale interferometer since sensitivity in the detection band cannot be lower than shot-noise level of local measurement of the ITMs in the control bandwidth

Control Filter

- Instability induced by optical spring requires feedback control
- In general local meter and large scale interferometer could be detuned and therefore show instabilities
- It can be shown that an appropriate control feedback leaves noise spectral density unchanged

