

Thermal Compensation in LIGO

Phil Willems- Caltech

Baton Rouge LSC Meeting, March 2007

LIGO-G070146-00-Z

LIGO The Essence of the Problem, and of its Solution

Add optical power to the ITM to erase the thermal gradient, leaving a uniformly hot, flat-profile substrate.

LIGO

Sideband recycling gain

LIGO

•Imaging target onto the TM limits the effect of diffraction spreading

•Modeling suggests a centering tolerance of 10 mm is required

CO₂ Laser Projector Layout

LIGO

Thermal Compensation as Installed

TCS Servo Control

LIGO

Heating Both ITMs in a Power-Recycled Michelson

120 mW

LIGO

150 mW

180 mW

Carrier

RF Sideband Power Buildup

RF Sideband Power Buildup

Common-mode Bulls-eye Sensor

 Good mode overlap of RF sideband with carrier determines optimal thermal compensation- so we measure the RF mode size to servo TCS.

Differential TCS- Control of AS_I

What Is AS_I?

AS_Q: RF sidebands at dark port create swinging LO field- when arm imbalance detunes carrier from dark fringe signal appears at quadrature phase

- AS_I: dark fringe means no carrier, RF sideband balance means no LO at this phase- there should be no signal.
- Yet, this signal dominates the RF photodetection electronics!
 - --there must be carrier contrast defect
 - --there must be RF sideband imbalance
 - --apparently, slightly imperfect ITM HR surfaces mismatch the arm modes, creating the contrast defect. TCS provides the cure.

Thermal Time Scales

After locking at high power, the heat distribution in the ITM continues to evolve for hours. To maintain constant thermal focusing power requires varying TCS power.

TCS Noise Issues

RIN of TCS-Y CO₂ Laser

LIGO

TCS Noise Coupling Mechanisms

- Thermoelastic (TE)- fluctuations in locally deposited heat cause fluctuations in local thermal expansion
- Thermorefractive (TR)- fluctuations in locally deposited heat cause fluctuations in local refractive index
- Flexure (F)- fluctuations in locally deposited heat cause fluctuations in *global* shape of optic

$$\langle \triangle z \rangle = \frac{P}{2\pi f C \rho} \left(\frac{1}{\pi w^2} \left[(1+\eta) \alpha \left(1 - \frac{\pi}{2\mathcal{F}} (n-1) \right) - \frac{\pi}{2\mathcal{F}} \frac{dn}{dT} \right] + \frac{6\alpha}{h^2} C_{\text{num}}^{\text{cen}} \right) \text{RIN}$$

Flexure Noise- A Simple Model

A skinny LIGO mirror with 'annular' heating

The probe beam sees the mirror move at the center due to wiggling far from center 19

ノ川川

TCS Injected Noise Spectrum

Quality of Compensation

Projector Heating Patterns

Annulus Mask

Central Heat Mask

•Intensity variations across the images due to small laser spot size

•Projection optics work well

'Gold Star' Mask Design

LIGO Laboratory

"star"- from hole pattern

- "gold"- gold coating to reduce power absorption
- Hole pattern is clearly not ideal but diffraction and heat diffusion smooth the phase profile

LIGO Improved Carrier Power with Gold Star Mask

^{2006-01-24 12:00:00 2006-02-13 12:00:00}

Enhanced LIGO TCS

Our Need for Power

- Initial LIGO runs at ~7W input power
- Enhanced LIGO will run at ~30W input power
 - » 4-5x more absorbed power
 - » Naively, ~4-5x more TCS power needed
 - » Practically, more power even than this may be needed since LIGO point design is meant to make TCS unnecessary at 6W
- Our current projectors are not adequate

Test Mass Absorption Measurement Technique-Spot Size

LIGO

LIGO

Test Mass Absorption Measurement Technique-Acoustic Frequencies

- test mass acoustic frequencies vary with temperature, so monitor their drift as the IFO power is varied
- requires no additional optics
- measures all ITMs and ETMs simultaneously

Many thanks to Alessio Rocchi & Viviana Fafone from Virgo for showing us this could work

) Laboratory

Measured Test Mass Absorption

Enhanced LIGO TCS Projector

Axicon design proposed by II-VI for Enhanced LIGO

The Axicon

