Estimating thermo-optic noise from AdLIGO coatings

Andri M. Gretarsson Embry-Riddle

DCC#: G070161-00-Z

Thermo-optic noise

- Equilibrium temperature fluctuations in the test mass surface cause fluctuations in physical parameters of the coating
 - Thermal expansion coefficient, $\alpha \Rightarrow$ Thermoelastic noise.
 - Thermorefractive coeff. $\beta = dn/dT \Rightarrow$ Thermorefractive noise.

Thermo-optic noise

 (coherent) sum of thermoelastic and thermorefractive contributions.

Thermorefractive contribution somewhat higher than thermoelastic contribution but same order of magnitude.

 $S_T(\omega) = \frac{\sqrt{2}k_B T^2}{\pi r_0^2 \sqrt{\omega \kappa \rho C}}$

 $S_{x,TE}(\omega) = \frac{\sqrt{2k_BT^2}}{\pi r_0^2 \sqrt{\omega \kappa \rho C}} \times (2\alpha_{eff}d)^2$

Formulas shown are from Braginsky and Vyatchanin (2003).

Independent thermoelastic noise calculation using a different approach due to Fejer et al. (2004) is used in Bench 5.0.

$$S_{x,TR}(\omega) = \frac{\sqrt{2}k_B T^2}{\pi r_0^2 \sqrt{\omega \kappa \rho C}} \times (2\beta_{eff} d)^2$$

$$\alpha_{eff} = (1 + v_{bulk}) \left[\frac{\alpha_1 d_1}{d_1 + d_2} \frac{E_1 (1 - 2v_{bulk})}{E_{bulk} (1 - 2v_1)} + \frac{\alpha_2 d_2}{d_1 + d_2} \frac{E_2 (1 - 2v_{bulk})}{E_{bulk} (1 - 2v_2)} - \alpha_{bulk} \right]$$

$$\beta_{eff} = \frac{n_1 n_2 (\beta_1 + \beta_2)}{8 (n_1^2 - n_2^2)} \frac{\lambda}{d}$$

How to estimate thermo-optic noise

- Use formulas (From Braginsky and Vyatchanin or Fejer et al.)
 - Need α and β for both the high index and low index coating materials *in their amorphous-film state*.
 - The $\beta_{T\alpha_2O_5}$ for ion beam coatings never measured. Measurement of $\beta_{T\alpha_2O_5}$ for LIGO style coatings necessary.
 - One measurement exists for electron beam deposited coating. Rather high: $\beta_{T\alpha_2O_5} = 1.21 \times 10^{-4}$ (Inci).
- May be possible to measure the noise directly in the TNI.

How to measure $\beta_{T\alpha_2O_5}$ with resolution of several 10⁻⁶ K⁻¹ over ΔT ~100 K near room temperature.

- Brewster angle change of a single tantala layer:
 - Need DC sensitivity to $\Delta \theta_B \sim 10^{-4}$ rad. -> "Somewhat hard" due to laser beam pointing stability, air motion etc.
- Ellipsometry:
 - Need DC sensitivity to changes of R_p / R_s on the order of about 10⁻⁴. -> "Fairly doable".
- d*R*/d*T* for a 30-layer coating for a λ on the "reflectivity cliff":
 Need DC sensitive to Δ*R* ~ 1%. -> "Easy".

Measuring dn/dT for Ta₂O₅ coating layers

The setup

Obtain:

(P_{trans} / P_{input})

and

 $(P_{\rm refl} / P_{\rm input})$

versus

 $T_{\rm sample}$

Typical raw data

Thermo-optic noise from AdLIGO coatings

- A clearly "visible" noise source for AdLIGO in the broadband mode.
- The limiting noise source for AdLIGO in the narrowband mode.

The TNI is in the ballpark

- With $\beta_{T\alpha_2O_5} = 7.5 \times 10^{-5}$, the TNI is *very close* to seeing thermo-optic noise.
 - TNI calibration under review (quoted noise floor probably too low by ~25%)
 - My measurements to date are at λ =543 nm. TNI interrogates at 1064 nm.

Next

- Measure $\lambda/8$ Ta₂O₅, $3\lambda/8$ SiO₂ coating with current (green) laser for comparison with current results.
- Change to 1064 nm laser.
- Measure some of the existing \u03c6/4 coatings on thin samples:
 - Start with pure tantala / silica coating for comparison with previous results.
 - Get to Titania-doped tantala / silica as quickly as possible.