

Search for Gravitational Wave Radiation Associated with the SGR 1806-20 Hyper Flare

Luca Matone, for the LIGO Scientific Collaboration Columbia University – GECo Group April 2007 APS Meeting

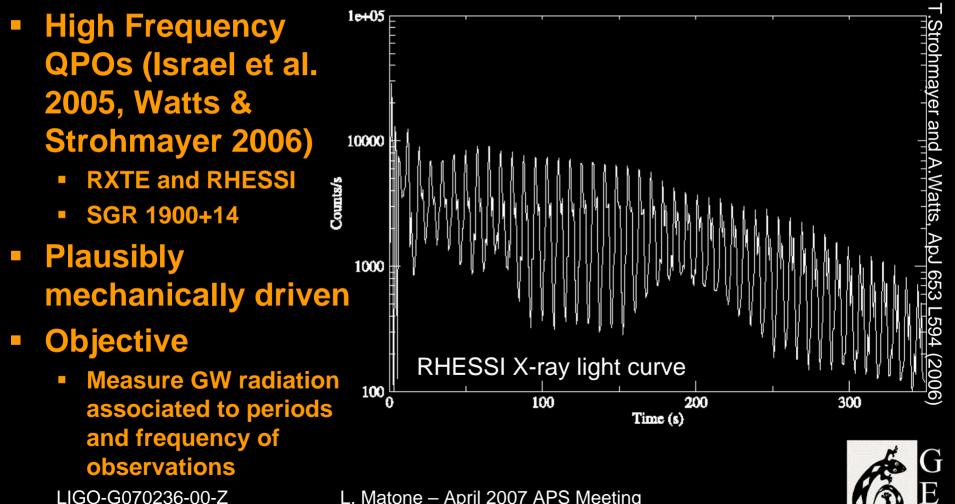
LIGO-G070236-00-Z

LIGO The SGR 1806-20 Hyper Flare of December 27, 2004

Counts p

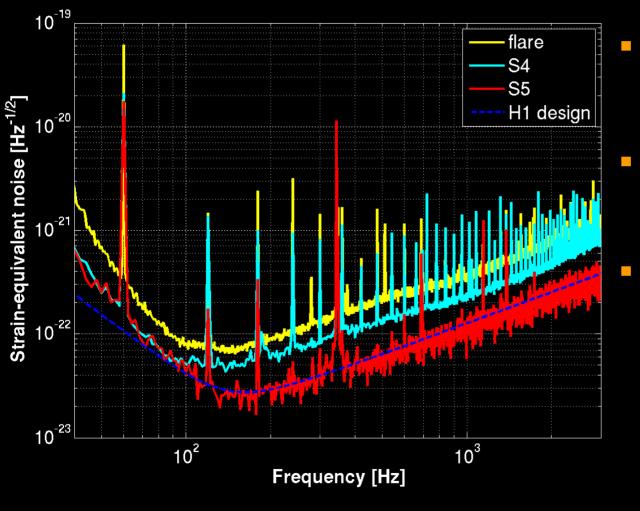
- Soft Gamma-ray Repeater SGR 1806-20 emits a record flare
- Distance [6 : 15] kpc
- Energy ~10⁴⁶ erg
- Pulsating tail lasting six minutes

200 ੈਬ 100 10,000 a Time (s) Nature **434**, 1098 (2005 1,000 100 100 300 200 400 Time (s)


RHESSI X-ray light curve (20 -100 keV)

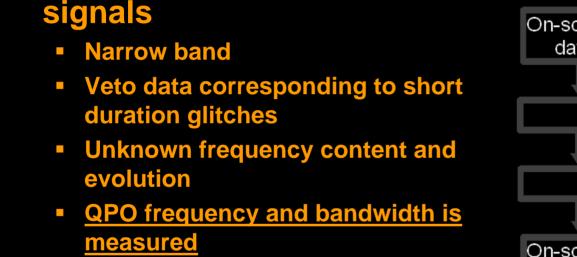
LIGO-G070236-00-Z

Discovery of High Frequency QPOs and Search Objective


4GO

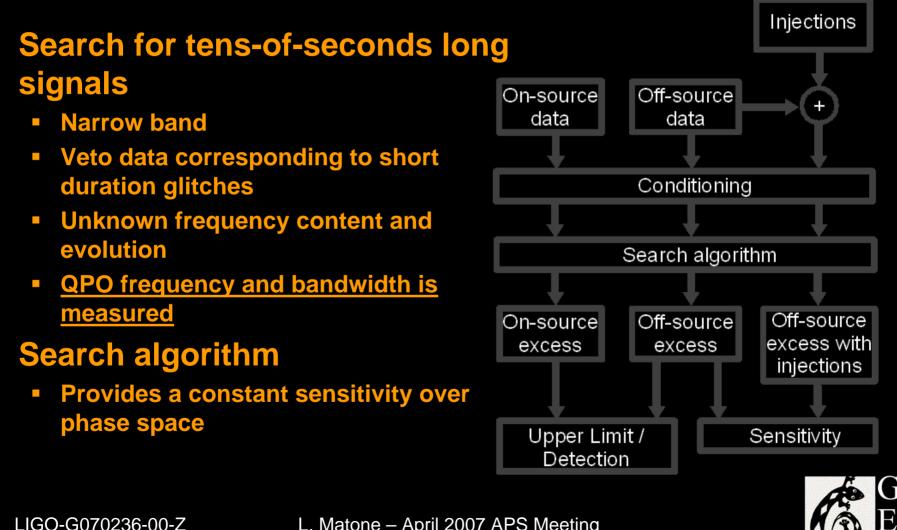
Detector Sensitivity

Epoch


- Post-S3, pre-S4
- AstroWatch program
- Single detector
 - H1: Hanford 4 km long interferometer
- Strain equivalent noise at 100 Hz
 - ~9 x 10⁻²³ strain/rHz

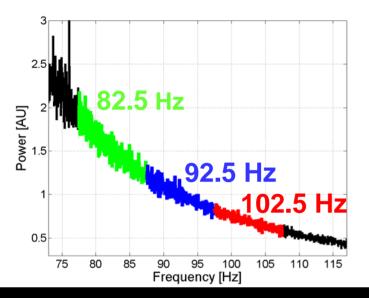
LIGO-G070236-00-Z

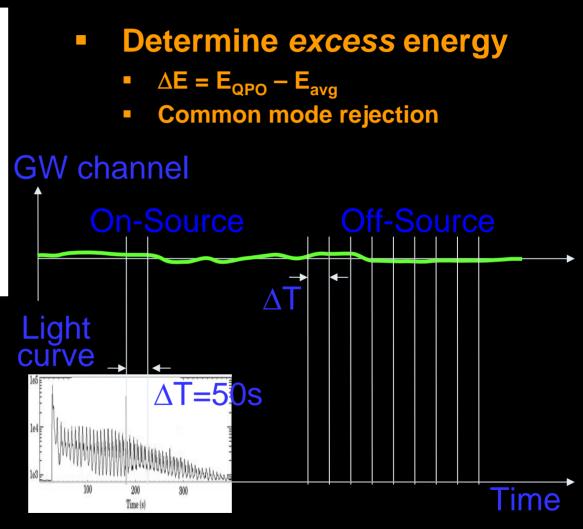
LIGO-G070236-00-Z


Excess Energy Measure

Search algorithm

LIGO

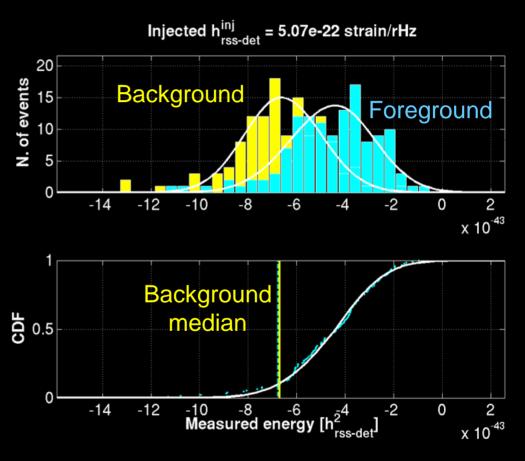

Provides a constant sensitivity over phase space



Search Algorithm

4GO

 Measure signal energy in three adjacent frequency bands

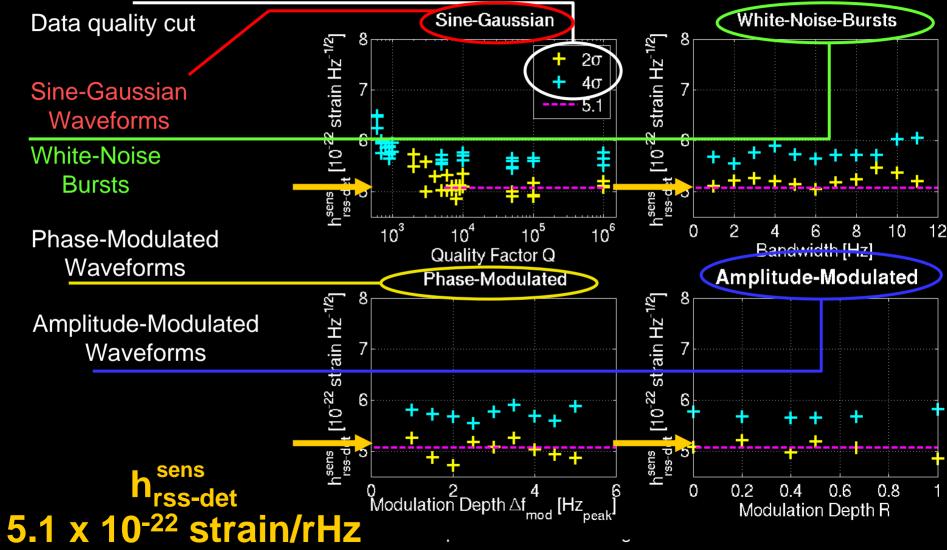

Search Sensitivity

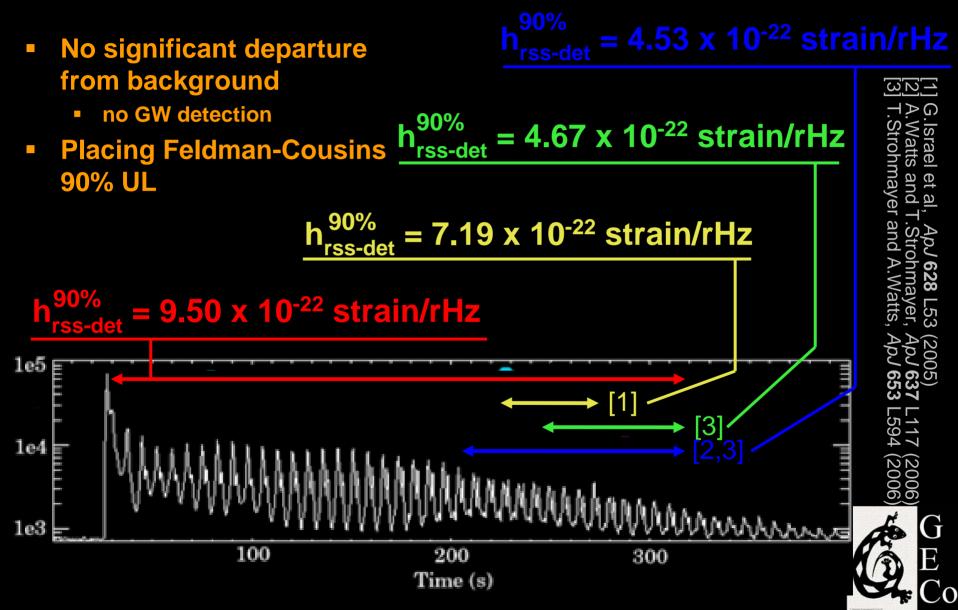
- Determine sensitivity via injections
 - Injected waveform strenght h_{rss-det}
- Sensitivity h^{sens}_{rss-det}

4(C()

 injected h_{rss-det} such that 90% of the resulting ∆E is above background median

$$h_{rss-det} = \sqrt{\int_{t_1}^{t_1 + \Delta t} \left| h_{det}(t) \right|^2 dt}$$




LIGO-G070236-00-Z

Search Sensitivity 92.5 Hz QPO, 170s-220s

4GO

Observation	- ·				Threshold _{non-det} $I_{10}=22$ $I_{10}=1/21$	$\mathbf{h}_{rss-det}^{90\%}$
	[Hz]	[Hz]	[s]	[s]	$[10^{-22} \text{strain Hz}^{-1/2}]$	$[10^{-22} { m strain \ Hz^{-1/2}}]$
$^{ m e,f}$	92.5	10	150 - 260	110	18.0	2.75 +0.47 +0.70 +0.16 +0.77 = 4.53
g			190-260	70	15.7	$2.90 +0.43 +0.74 +0.17 +0.75 = 4.6^{\circ}$
d			170-220	50	14.4	5.15 + 0.35 + 1.32 + 0.31 + 0.37 = 7.19
			0-260	260	22.5	$5.06 {}^{+1.42} {}^{+1.30} {}^{+0.30} {}^{+2.21} = 9.56$
control freq.	185.0	8	150-260	110	19.0	9.48 $+0.51 + 2.43 + 0.57 + 0.27 = 12.8$
			190-260	70	17.6	$8.17 {}^{+0.40} {}^{+2.09} {}^{+0.49} {}^{+0.13} = 11.0$
			170 - 220	50	16.5	$8.03 {}^{+0.30} {}^{+2.06} {}^{+0.48} {}^{+0.2} {}^{-1} = 10.8$
			0-260	260	24.1	11.4 + 1.06 + 2.91 + 0.68 + 0.0 = 15.3
\mathbf{h}	150.3	17	0-350	350	30.2	12.4 +1.78 +3.16 +0.74 +0.00 =16.7
control freq.	300.6	30	0-350	350	70.3	26.4 + 4.46 + 6.75 + 1.58 + 0.00 = 36.0
i	626.5	10	50 - 200	150	53.4	$25.6 ^{+1.76} ^{+6.56} ^{+1.54} ^{+0.00} = 33.9$
1			190-260	70	47.4	$19.4 {}^{+1.23} {}^{+4.97} {}^{+1.17} {}^{+0.02} = 25.7$
			0-260	260	60.1	28.2 + 2.70 + 7.22 + 1.69 + 0.0 = 37.6
control freq.	1253.0	10	50-200	150	114	49.4 + 4.10 + 12.64 + 2.96 + 0.00 = 65.6
			190-260	70	89.0	30.6 +2.69 +7.84 +1.84 +0.00 = 40.7
			0-260	260	107	$53.5 ^{+4.50} ^{+13.71} ^{+3.21} ^{+0.00} = 71.2$
m	1837.0	10	230-245	15	94.7	34.6 + 1.26 + 8.86 + 2.08 + 0.00 = 45.6
			0-245	245	192	54.9 + 11.72 + 14.05 + 3.29 + 0.00 = 76.8
From a	stro-r	h/070				

TABLE II: List of frequencies and observation times used in this analysis with the corresponding results. The first column describes the addressed QPO observation, labeled by letters as they appear in Tab. I. A wider range of the detector's sensitivity

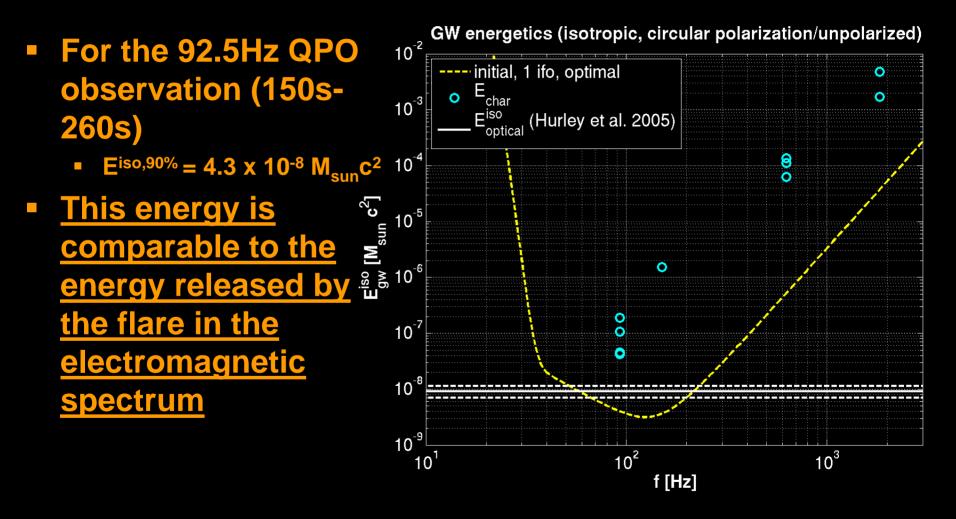
Enorgotice

Gravitational Wave Energetics

Assuming

4GO

- Isotropic emission
- Equal amount of power in both polarization (circular/unpolarized)
- E^{iso, 90%} is a characteristic energy radiated in the duration and frequency band we searched


$$E_{GW}^{iso,90\%} = 4.29 \times 10^{-8} M_{sun} c^{2} \times \left(\frac{r}{10 kpc}\right)^{2} \left(\frac{f_{qpo}}{92.5 Hz}\right)^{2} \left(\frac{h_{rss-det}^{90\%}}{4.53 \times 10^{-22} strain / \sqrt{Hz}}\right)^{2}$$

LIGO-G070236-00-Z

Gravitational Wave Energetics

4**IGO**

LIGO

Conclusions

- Excess energy algorithm
 - Designed to search for tens of seconds long narrow band signals
 - Estimated the search sensitivity using software injections
- Upper bounds on the GW strength associated to the observed QPOs
 - Best case for the 92.5 Hz QPO (150s 260s)
 - h^{90%}_{rss-det} = 4.5 x 10⁻²² strain/rHz
 - Characteristic energy (isotropic, equal power in both polarization states)
 - E ^{iso, 90%} = 4.3 x 10⁻⁸ M _{sun} c²
 - comparable to the emitted energy in the electromagnetic spectrum
- Next step:
 - address flares from SGR 1806-20 and SGR 1900+14 during the fifth science run (S5)
 - strain equivalent noise improvement (~3x at 150 Hz)
 - exploiting multiple data streams (cross-correlation)

LIGO-G070236-00-Z

