

Visualising gravitational-wave event candidates with the

LIGO

Coherent Event Display

R.A. Mercer & S. Klimenko University of Florida

APS Meeting: April 17, 2007

LIGO-G070237-00-Z

• Justification

- Coherent Analysis
- Gravitational-wave Sources
- Structure
- Conclusions

Justification

- World-wide network of gravitational-wave detectors now online: LIGO (HI, H2 & LI), GEO, VIRGO
- Visualise event candidates from search pipelines running on data from these detector networks
- Follow up tool for coherent analysis

Coherent Analysis

- Combine the detector responses into a single coherent statistic and generate a list of burst event candidates
- Simultaneously analyse data from all the detectors within the network
- Only events coincident in all detectors make it through the pipeline
- Coherent Event Display is implemented using the Coherent WaveBurst algorithms (I.Yakushin R12.4)

GW Sources

- Coherent Event Display is targeted at burst gravitational-wave sources
- Transient gravitational-wave signals, no accurate knowledge of the waveforms
- Supernovae, GRBs, BH Mergers...

Structure

• Web Page

- Job Parameters
- Event Parameters
- Time-Frequency Maps
- Likelihood Time-Frequency Maps
- Reconstructed Detector Responses
- Skymaps

Example: Sine Gaussian Injection

Coherent WaveBurst Event Summary Page

Job Parameter Table
Event Parameter Table
Network Data Matrix
Time-Frequency Maps
Reconstructed Detector Responses
<u>Skymaps</u>
Likelihood Time-Frequency Map
Event Parameters (XML File)
Configuration File
Documentation

GPS Segment Time (s)	816258792				
UTC Segment Time	Nov 17 2005 10:32:59 UTC				
Тор					
Free of Demonstration Table					

Event Parameter Table

Job Parameter Table

IFO	L1	H1	H2		
Time Lag (s)	0.000	0.000	0.000		
GPS Start Time (s)	816258866.406	816258866.406	816258866.406		
GPS Stop Time (s)	816258866.461	816258866.461	816258866.461		
GPS Central Time (s)	816258866.436	816258866.429	816258866.429		
Central Time (s)	74.436	74.429	74.429		
hrss	5.33e-22	8.59e-22	8.59e-22		
SNR	1.06e+02	5.03e+02	6.88e+01		
Null	1.14e+01	6.15e+00	3.35e+00		
Rank SNR	6.76e+01	6.07e+01	5.05e+01		
Rank Significance	3.15e+01	2.78e+01	2.19e+01		
Gaussian Significance	4.72e+01	2.37e+02	2.77e+01		
Noise	5.28e-23	3.92e-23	9.61e-23		
Likelihood	3.28e+02				
Phi (degrees)	194.50				
Theta (degrees)	46.50				
Correlation	9.29e-01				
Size			6		
flow (Hz)			64.00		
fhigh (Hz)	128.00				
Central Frequency (Hz)	101.70				
Bandwidth (Hz)	64.00				
Resolution (Hz)			128		
Coometrie Cignificance			2 000 .00		

Structure

• Web Page

- Job Parameters
- Event Parameters
- Time-Frequency Maps
- Likelihood Time-Frequency Maps
- Reconstructed Detector Responses
- Skymaps

Simulated GW Injection, LIGO Network

IFO	L1	H1	H2		
Time Lag (s)	0.000	0.000	0.000		
GPS Start Time (s)	816258866.406	816258866.406	816258866.406		
GPS Stop Time (s)	816258866.461	816258866.461	816258866.461		
GPS Central Time (s)	816258866.436	816258866.429	816258866.429		
Central Time (s)	74.436	74.429	74.429		
hrss	5.33e-22	8.59e-22	8.59e-22		
SNR	1.06e+02	5.03e+02	6.88e+01		
Null	1.14e+01	6.15e+00	3.35e+00		
Rank SNR	6.76e+01	6.07e+01	5.05e+01		
Rank Significance	3.15e+01	2.78e+01	2.19e+01		
Gaussian Significance	4.72e+01	2.37e+02	2.77e+01		
Noise	5.28e-23	3.92e-23	9.61e-23		
Likelihood			3.28e+02		
Phi (degrees)	194.50				
Theta (degrees)	46.50				
Correlation			9.29e-01		
Size			6		
flow (Hz)			64.00		
fhigh (Hz)			128.00		
Central Frequency (Hz)			101.70		
Bandwidth (Hz)			64.00		
Resolution (Hz)			128		
Geometric Significance			3.29e+00		
Event Duration (s)			0.054688		
F+	-3.91e-01	6.39e-01	6.39e-01		
Fx	-3.50e-01	5.54e-01	5.54e-01		

_ Injected at le-21

_ Injected at 100 Hz

Structure

• Web Page

- Job Parameters
- Event Parameters
- Time-Frequency Maps
- Likelihood Time-Frequency Maps
- Reconstructed Detector Responses
- Skymaps

Time-Frequency Maps

- Coherent WaveBurst algorithms use wavelet transformations to produce data in the timefrequency domain (time-frequency maps)
- Shows the wavelet coefficients normalised by the noise RMS as a function of time and frequency
- Time-Frequency maps then used to produce the coherent statistic

Simulated GW Injection LIGO Network

LI

нι

LIGO

Simulated GW Injection LIGO Network

Simulated GW Injection LIGO Network

Structure

• Web Page

- Job Parameters
- Event Parameters
- Time-Frequency Maps
- Likelihood Time-Frequency Maps
- Reconstructed Detector Responses
- Skymaps

Likelihood

• Likelihood for Gaussian noise

$$\mathcal{L} = \sum_{i=1}^{N} \sum_{k=1}^{K} \frac{1}{2\sigma_k^2} \left[x_k^2[i] - (x_k[i] - \xi_k[i])^2 \right]$$

Detector response

LIGO

$$\xi_k[i] = F_{+k}h_+[i] + F_{\times k}h_\times[i]$$

• Energy split between signal and noise

Simulated GW Injection, LIGO Network

LIGO

Likelihood Time-Frequency Map

Structure

• Web Page

- Job Parameters
- Event Parameters
- Time-Frequency Maps
- Likelihood Time-Frequency Maps
- Reconstructed Detector Responses
- Skymaps

Reconstructed Detector Responses

 Reconstructed detector responses and gravitational-wave waveforms are given by variations of the likelihood functional

LIGO

 Potentially reconstructed waveforms and detector responses can be compared to source models for extraction of source parameters, if such models are available

Simulated GW Injection LIGO Network

L

нι

LIGO

Simulated GW Injection LIGO Network

H2

LIGO

Simulated GW Injection LIGO Network

Structure

• Web Page

- Job Parameters
- Event Parameters
- Time-Frequency Maps
- Likelihood Time-Frequency Maps
- Reconstructed Detector Responses
- Skymaps

Likelihood Simulated GW Injection LIGO Network

- Detected energy incoherent coherent $2\mathcal{L} = \sum_{mn} C_{mn} \langle x_m x_n \rangle = E_{m=n} + E_{m \neq n}$
- Network correlation

$$C_{\text{net}} = \frac{E_{m \neq n}}{\text{Null} + E_{m \neq n}}$$

 Used for post-production selection of triggers

Correlation Simulated GW Injection LIGO Network

ugo Alignment & Sensitivity

• Two important network parameters that measure the alignment and sensitivity of the network to the two components of the incident gravitational-wave

$$SNR_{total} = 2g \left(\left\langle h_1^2 \right\rangle + \epsilon \left\langle h_2^2 \right\rangle \right)$$
network sensitivity network alignment
$$g = g_r + |g_c| \qquad \epsilon = \frac{g_r - |g_c|}{g_r + |g_c|}$$
• Network antenna patterns
$$g_r = \sum_{k=1}^{K} \frac{F_{+k}^2 + F_{\times k}^2}{4\sigma_k^2} \qquad g_c = \sum_{k=1}^{K} \frac{[F_{+k} + iF_{\times k}]}{4\sigma_k^2}$$

2

Simulated GW Injection LIGO Network

Sensitivity

Simulated GW Injection LIGO Network

Conclusions

- Coherent tool for event candidate visualisation
- Coherent follow up analysis

- Based upon the Coherent WaveBurst algorithms
- Currently supports LIGO and LIGO/GEO detector networks
- Extendible to other networks

Extra Slides

- Introduce time lags to obtain an estimate of the false alarm rate due to random coincident noise in the detectors
- Shift data from one detector relative to the other detectors in the network
- Apply a time shift T to first detector
- $S_1(t + \tau)$, $S_2(t)$ and $S_3(t)$ treated as being coincident