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The X-Pendulum
 Developed as a low frequency vibration isolator for TAMA

2D version1D version
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Pendulum Modelling
 Wanted an AdvLIGO SUS design model to go beyond the

Matlab model of Torrie, Strain et al.
 Desired features:

» Full 3D with provision for asymmetries
» Proper blade model
» Wire bending elasticity
» Arbitrary damping and consequent thermal noise
» Export to other environments such as Matlab/Simulink and E2E.

 Mathematica code originally developed for modeling the X-
pendulum was available -> reuse and extend.

 See http://www.ligo.caltech.edu/~e2e/SUSmodels
 Manual: T020205-00 (-01 pending)
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The Toolkit
 The toolkit is a Mathematica “package”, PendUtil.nb, for specifying

different configurations (e.g., quad, triple etc) in a (relatively) user-
friendly way

 Supported features:
» 6-DOF rigid bodies for masses (no internal modes)
» Springs described by an elasticity tensor and a vector of pre-load forces
» Massless wires (i.e., no violin modes) but detailed elasticity model from beam equation
» Arbitrary frequency-dependent damping on all sources of elasticity
» Symbolic up to the point of minimizing the potential to find the equilibrium position
» Calculates elasticity and mass matrices semi-numerically (symbolic partial derivatives of

functions with mostly numeric coefficients)
» Eigenfrequencies and eigenmodes calculated numerically
» Arbitrary frequency dependent damping on each different elastic element
» Transfer functions
» Thermal noise plots
» Export of state-space matrices to Matlab and E2E
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Models
 Two major families of models have been defined:

» The triple models reflect a generic GEO-style pendulum with 3 masses, 6
blade springs and 10 wires.

» The quad models reflect a standard AdvLIGO quad pendulum, with 4
masses, 6 blade springs and 14 wires.

 Many toy models
» LIGO-I two-wire pendulum
» Simple pendulum
» Simple pendulum on a blade spring
» Etc

 Steep learning curve but a major new model can be
programmed in a day by an experienced user

5
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Triple Pendulum Model

 2 blade springs
 2 wires
 “upper” mass
 4 blade springs
 4 wires
 “intermediate” mass
 4 fibres
 optic
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Quad Pendulum
 2 blade springs
 2 wires
 “top” mass
 2 blade springs
 4 wires
 “upper” mass
 2 blade springs
 4 wires
 “intermediate” mass
 4 fibres
 optic
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Defining a Model (i)
 Define the “variables” (cf. x in the theory - example from

the xtra-lite triple):
 allvars = {

» x1,y1,z1,yaw1,pitch1,roll1,

» x2,y2,z2,yaw2,pitch2,roll2,

» x3,y3,z3,yaw3,pitch3,roll3

 };

 Define the “floats” (cf. q in the theory):
» allfloats = {

–qul,qur,qlf,qlb,qrf,qrb
» };

 Define the “parameters” (cf. s in the theory):
 allparams = {

» x00, y00, z00, yaw00, pitch00, roll00

 };
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Defining a Model (ii)
 Define coordinate lists for rigid bodies of interest:
 optic = {x3, y3, z3, yaw3, pitch3, roll3};

 support = {x00, y00, z00, yaw00, pitch00, roll00};

 Define coordinate lists for points on rigid bodies
 massUl={0,-n1,d0}; (* left wire attachment point on upper mass *)

 Define list of gravitational potential terms:
 gravlist = {}; (* initialize list *)

 AppendTo[gravlist, m3 g z3]; (* typical item *)

9
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Defining a Model (iii)
 Define list of wires, each with the following format
 {

» coordinate list defining first mass,

» attachment point for first mass (local coordinates),

» attachment vector for first mass,

» coordinate list defining second mass,

» attachment point for second mass (local coordinates),

» attachment vector for second mass,

» Young's modulus,

» unstretched length,

» longitudinal elasticity,

» vector defining principal axis 1,

» moment of area along principal axis 1,

» moment of area along principal axis 2,

» linear elasticity type,

» angular elasticity type,

» torsional elasticity type,

» shear modulus,

» cross sectional area for torsional calculations,
»       torsional stiffness geometric factor

 }
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Defining a Model (iv)
 Define list of springs, each with following format:
 {

» coordinate list defining first mass,

» attachment point for first mass (local coordinates),

» attachment angles for first mass (yaw, pitch, roll),

» coordinate list defining second mass,

» attachment point for second mass (local coordinates),

» attachment angles for second mass (yaw, pitch, roll),

» damping type,

» 6x6 elasticity matrix,

» 1*6 pre-load force/torque vector

 }

 Define kinetic energy
 IM3 = {{I3x, 0, 0}, {0, I3y, 0}, {0, 0, I3z}}; (* typical MOI tensor)

 kinetic = (

» …

» +(1/2) m3 Plus@@(Dt[b2s[optic,COM],t]^2)

» +(1/2) omegaB[yaw3, pitch3, roll3].IM3.omegaB[yaw3, pitch3, roll3]

» …

 );
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Defining a Model (v)
 Define default values of constants
 defaultvalues = {

» g -> 9.81, (* value given numerically *)

» …

» m3 -> Pi*r3^2*t3, (* value given in terms of other constants *)

» …

» x00 -> 0, (* value for nominal position of structure *)

» y00 -> 0,

» z00 -> 0,

» …

» damping[imag,dampingtype] -> (phi&) (* value for frequency dependence of damping *)

» …

 };

 Define starting point for finding equilibrium position:
 startpos = {

» x1 ->0,

» y1 ->0,

» …

 };
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Defining a Model (vi)
 Define model-specific utilities:

» A function to list eigenmodes in a table
»         pretty[eigenvector]

» A function to plot eigenmode shapes
»         eigenplot[eigenvector, amplitude, {viewpoint}]

» Vectors representing force and displacement inputs and displacement
outputs of interest

»         structurerollinput = makeinputvector[roll00];

»         opticxinput = makefinputvector[x3];

»           opticx = makeoutputvector[x3];

» Rotation matrices to put angle variables in a more easily interpretable
basis:

»           e2ni;

13



4 May 2007 LIGO-G070283-00-K 14

Sample Output (i)
 Transfer function

from x
displacement of
support to x
motion of optic
(quad model,
reference
parameters of
20031114):
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Damping
 Damping can be represented by a complex elastic

modulus:

 Strictly, the Kramers-Kronig relation applies:

 However often the variation in the real part can be ignored:

 Need to consider total potential as sum of terms, each with
different damping:
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Sample Output (ii)
 Thermal noise in

x motion of optic
(quad model,
reference
parameters of
20031114):

 



4 May 2007 LIGO-G070283-00-K 17

Export to Matlab/Simulink
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Export to E2E
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Application to Quad Controls

 Good agreement
after adding lots of
new physics:
» Improved wire

flexure correction
» Blade lateral

compliance
» Blade geometric

antispring effect
» Non-diagonal

moment of inertia
tensors

ID
pitch
x
y
z
yaw
roll
x
y
pitch
yaw
x
y
z
yaw
pitch
roll
yaw
pitch?
roll
x
z
roll
z
roll

f (theory)
0.395
0.443
0.464
0.595
0.685
0.810
0.987
1.043
1.167
1.428
1.981
2.095
2.362
2.538
2.818
2.762
3.167
3.228
3.332
3.401
3.793
5.120

17.700
25.741

f (exp)
0.403
0.440
0.464
0.549
0.684
0.794
0.989
1.038
1.355
1.428
1.978
2.075
2.222
2.515
2.576
2.734
3.149
3.162
3.333
3.381
3.589
5.029

?
?



4 May 2007 LIGO-G070283-00-K 20

Dissipation Dilution
 Often said: main restoring force in a pendulum is

gravitational therefore no loss -> “dissipation dilution”
 Not true!

 Gravitational force is purely vertical.
 Actual restoring force is sideways component of tension in

wire
 Gravity’s only contribution is to tension the wire.
 Other forms of tension are equivalent (cf. violin modes also

low-loss
 What is it about tension?

20
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 Mass on spring
 Force:
 Frequency:
 Amplitude (phasor):
 Velocity (phasor):
 Force (phasor):
 Power (average):
 Energy (max):
 Decay time (energy):
 Decay time (amp.)

Non-dilution case (vertical)
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Dilution case (horizontal - exactly)
 Constrain mass to move exactly

horizontally

 Restoring force:
 Spring constant:
 Frequency:
 Length:
 Power:
 Energy:

 Energy still 2nd order but power 4th order
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But what about pendulums?!
 In a pendulum, mass really moves on an arc.
 Doesn’t matter!
 Normal mode analysis can’t tell the difference!
 Eigenmodes are always linear in coordinates used.
 Analyze in r,theta -> eigenmode is arc
 Analyze in x, z -> eigenmode is straight line
 Same frequencies!
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What about pendulums (ii)

24

 Two independent reasons why pendulums have low loss.
» Restoring force is sideways component of tension
» Energy may then be off-loaded into gravitational potential -> stretch of spring

less even than second order

 Depends on bounce and pendulum mode frequencies
» Usual case, bounce frequency high -> mass moves on arc.
» Very low bounce frequencies (superspring) -> mass really does move

horizontally
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Dissipation Dilution and
Mathematica Toolkit

 Solution used in toolkit:
» Keep a separate stiffness matrix Pi for each elastic element
» For all elasticity types that depend on tension
» Compute potential matrix once normally
» Recompute with tension zeroed out.
» Apply damping to stiffness components that persist with tension off

 Need to do analogous thing for ANSYS
 Difficult because detailed potential data not available, or at

least not easy to access.
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Test Case for ANSYS: Violin
modes of a fibre

 Fibre under tension behaves as
if shortened by flexure correction
at each end

 Energy of two types
» Longitudinal stretching from bending out

of straight line (low-loss)

» Bending energy (lossy)
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Fibre results
 Fused silica, 350 mm long, 0.45

mm diameter
 Integrand of the two types

» Longitudinal ->
» Total 17.3 mJ for 10 mm amplitude

» Bending ->
» Total 0.256 mJ for 10 mm amplitude

 Dissipation dilution factor 67.6
 Will compare to ANSYS

 

 


