Pendulum Modeling in Mathematica ${ }^{\text {TM }}$ and Matlab ${ }^{\text {TM }}$

IGR Thermal Noise Group Meeting
4 May 2007

The X-Pendulum

- Developed as a low frequency vibration isolator for TAMA

Pendulum Modelling

- Wanted an AdvLIGO SUS design model to go beyond the Matlab model of Torrie, Strain et al.
- Desired features:
» Full 3D with provision for asymmetries
» Proper blade model
» Wire bending elasticity
» Arbitrary damping and consequent thermal noise
» Export to other environments such as Matlab/Simulink and E2E.
- Mathematica code originally developed for modeling the Xpendulum was available -> reuse and extend.
- See http://www.ligo.caltech.edu/~e2e/SUSmodels
- Manual: T020205-00 (-01 pending)

The Toolkit

- The toolkit is a Mathematica "package", PendUtil.nb, for specifying different configurations (e.g., quad, triple etc) in a (relatively) userfriendly way
- Supported features:
» 6-DOF rigid bodies for masses (no internal modes)
» Springs described by an elasticity tensor and a vector of pre-load forces
» Massless wires (i.e., no violin modes) but detailed elasticity model from beam equation
» Arbitrary frequency-dependent damping on all sources of elasticity
» Symbolic up to the point of minimizing the potential to find the equilibrium position
» Calculates elasticity and mass matrices semi-numerically (symbolic partial derivatives of functions with mostly numeric coefficients)
» Eigenfrequencies and eigenmodes calculated numerically
» Arbitrary frequency dependent damping on each different elastic element
» Transfer functions
» Thermal noise plots
» Export of state-space matrices to Matlab and E2E

Models

- Two major families of models have been defined:
» The triple models reflect a generic GEO-style pendulum with 3 masses, 6 blade springs and 10 wires.
» The quad models reflect a standard AdvLIGO quad pendulum, with 4 masses, 6 blade springs and 14 wires.
- Many toy models
» LIGO-I two-wire pendulum
» Simple pendulum
» Simple pendulum on a blade spring
» Etc
- Steep learning curve but a major new model can be programmed in a day by an experienced user

Triple Pendulum Model

- 2 blade springs
- 2 wires
- "upper" mass
- 4 blade springs
- 4 wires
- "intermediate" mass
- 4 fibres
- optic

Quad Pendulum

- 2 blade springs
- 2 wires
- "top" mass
- 2 blade springs
- 4 wires
- "upper" mass
- 2 blade springs
- 4 wires
- "intermediate" mass
- 4 fibres
- optic

4 May 2007

Defining a Model (i)

- Define the "variables" (cf. \mathbf{x} in the theory - example from the xtra-lite triple):
- allvars = 1
» $\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1, y \mathrm{yw} 1$, pitch1,roll1,
» $\mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 2, y a w 2, p i t c h 2, r o l 12$,
» $\mathrm{x} 3, \mathrm{y} 3, \mathrm{z} 3, y a w 3, \mathrm{pitch} 3, r o l 13$
- \};
- Define the "floats" (cf. q in the theory):

```
allfloats = {
    -qul,qur,qlf,qlb,qrf,qrb
    };
```

- Define the "parameters" (cf. s in the theory):
- allparans = $\}$
» $\mathrm{x} 00, \mathrm{y} 00, \mathrm{z} 00$, yaw00, pitch00, roll00
- \};

Defining a Model (ii)

- Define coordinate lists for rigid bodies of interest:
- optic $=\{x 3, y 3, z 3$, yaw3, pitch3, roll3\};
- support $=\{x 00, y 00, z 00$, yaw00, pitch00, roll00\};
- Define coordinate lists for points on rigid bodies
- massul=\{0,-n1,d0\}; (* left wire attachment point on upper mass *)
- Define list of gravitational potential terms:
- gravlist = \{\}; (* initialize list *)
- AppendTo[gravlist, m3 g z3]; (* typical item *)

Defining a Model (iii)

- Define list of wires, each with the following format
- \{
» coordinate list defining first mass,
» attachment point for first mass (local coordinates),
» attachment vector for first mass,
» coordinate list defining second mass,
» attachment point for second mass (local coordinates),
» attachment vector for second mass,
» Young's modulus,
» unstretched length,
» longitudinal elasticity,
» vector defining principal axis 1,
» moment of area along principal axis 1,
» moment of area along principal axis 2,
» linear elasticity type,
» angular elasticity type,
» torsional elasticity type,
» shear modulus,
» cross sectional area for torsional calculations,
» torsional stiffness geometric factor
- \}

Defining a Model (iv)

- Define list of springs, each with following format:
- \{

```
coordinate list defining first mass,
attachment point for first mass (local coordinates),
attachment angles for first mass (yaw, pitch, roll),
coordinate list defining second mass,
attachment point for second mass (local coordinates),
attachment angles for second mass (yaw, pitch, roll),
damping type,
6x6 elasticity matrix,
1*6 pre-load force/torque vector
```

- \}
- Define kinetic energy
- IM3 $=\{\{I 3 x, 0,0\},\{0, I 3 y, 0\},\{0,0, I 3 z\}\} ;(*$ typical MOI tensor)
- kinetic $=($
» ...
» $\quad+(1 / 2) \mathrm{m} 3$ Plus@@(Dt[b2s[optic, COM],t]^2)
» $+(1 / 2)$ omegaB[yaw3, pitch3, roll3].IM3.omegaB[yaw3, pitch3, roll3]
-);

4 May 2007

Defining a Model (v)

- Define default values of constants

- defaultvalues = \{

```
g -> 9.81, (* value given numerically *)
m3 -> Pi*r3^2*t3, (* value given in terms of other constants *)
..
x00 -> 0, (* value for nominal position of structure *)
y00 -> 0,
z00 -> 0,
damping[imag,dampingtype] -> (phi&) (* value for frequency dependence of damping *)
```

- \};
- Define starting point for finding equilibrium position:
- startpos = \{
» $\mathrm{x} 1 \mathrm{->} 0$,
» $\mathrm{y} 1 \mathrm{->}$,
» ...
- \};

Defining a Model (vi)

- Define model-specific utilities:
» A function to list eigenmodes in a table
> pretty[eigenvector]
» A function to plot eigenmode shapes
» eigenplot[eigenvector, amplitude, \{viewpoint\}]
» Vectors representing force and displacement inputs and displacement outputs of interest

```
structurerollinput = makeinputvector[roll00];
opticxinput = makefinputvector[x3];
    opticx = makeoutputvector[x3];
» Rotation matrices to put angle variables in a more easily interpretable
``` basis:
```

> e2ni;

```

\section*{Sample Output (i)}
- Transfer function from \(x\) displacement of support to \(x\) motion of optic (quad model, reference parameters of 20031114):

\section*{Damping}
- Damping can be represented by a complex elastic modulus:
\[
k \rightarrow k_{0}\left(\varepsilon^{\prime}(\omega)+i \varepsilon^{\prime \prime}(\omega)\right)
\]
- Strictly, the Kramers-Kronig relation applies:
\[
\varepsilon^{\prime}(\omega)-1=\frac{2}{\pi} P V \int_{-\infty}^{\infty} \frac{\varepsilon^{\prime \prime}(x)}{x-\omega} d x \quad \varepsilon^{\prime \prime}(\omega)=-\frac{2}{\pi} P V \int_{-\infty}^{\infty} \frac{\varepsilon^{\prime}(x)-1}{x-\omega} d x
\]
- However often the variation in the real part can be ignored:
\[
k \rightarrow k_{0}(1+i \phi(f))
\]
- Need to consider total potential as sum of terms, each with different damping: \(\quad \mathbf{P}=\sum \mathbf{P}_{i}\left(\varepsilon_{i}^{\prime}(f)+i \varepsilon_{i}^{\prime \prime}(f)\right)\)

\section*{Sample Output (ii)}
- Thermal noise in x motion of optic (quad model, reference parameters of 20031114):

\section*{Export to Matlab/Simulink}

\section*{Export to E2E}

\section*{Application to Quad Controls}
- Good agreement after adding lots of new physics:
» Improved wire flexure correction
» Blade lateral compliance
» Blade geometric antispring effect
» Non-diagonal moment of inertia tensors
\begin{tabular}{lrr}
ID & \(f\) (theory) & \(f(\) exp \()\) \\
pitch & 0.395 & 0.403 \\
x & 0.443 & 0.440 \\
y & 0.464 & 0.464 \\
z & 0.595 & 0.549 \\
yaw & 0.685 & 0.684 \\
roll & 0.810 & 0.794 \\
x & 0.987 & 0.989 \\
y & 1.043 & 1.038 \\
pitch & 1.167 & 1.355 \\
yaw & 1.428 & 1.428 \\
x & 1.981 & 1.978 \\
y & 2.095 & 2.075 \\
z & 2.362 & 2.222 \\
yaw & 2.538 & 2.515 \\
pitch & 2.818 & 2.576 \\
roll & 2.762 & 2.734 \\
yaw & 3.167 & 3.149 \\
pitch? & 3.228 & 3.162 \\
roll & 3.332 & 3.333 \\
x & 3.401 & 3.381 \\
z & 3.793 & 3.589 \\
roll & 5.120 & 5.029 \\
z & 17.700 & \(?\) \\
roll & 25.741 & \(?\)
\end{tabular}

\section*{Dissipation Dilution}
- Often said: main restoring force in a pendulum is gravitational therefore no loss -> "dissipation dilution"
- Not true!
- Gravitational force is purely vertical.
- Actual restoring force is sideways component of tension in wire
- Gravity's only contribution is to tension the wire.
- Other forms of tension are equivalent (cf. violin modes also low-loss
- What is it about tension?

\section*{Non-dilution case (vertical)}
- Mass on spring
- Force:
- Frequency:
- Amplitude (phasor):
- Velocity (phasor):
- Force (phasor):
- Power (average):
- Energy (max):
- Decay time (energy):
- Decay time (amp.)
\[
\begin{gathered}
F=-k\left(l-l_{0}\right) \\
\omega=\sqrt{\frac{k}{m}} \\
A_{L} \\
v=i \omega A_{L} \\
F=-A_{L} k_{0}(1+i \phi) \\
P=F v=A_{L}^{2} k_{0} \phi \omega \\
E=\frac{1}{2} k_{0} A_{L}^{2} \\
\frac{2}{\phi \omega} \\
\frac{1}{\phi \omega}
\end{gathered}
\]

\section*{Dilution case (horizontal - exactly)}
- Constrain mass to move exactly horizontally
- Restoring force:
\[
\begin{gathered}
F_{r}=T \sin \left(\frac{x}{l_{\varphi q}}\right) \approx \frac{T x}{l_{q}} \\
k_{T}=\frac{T}{l_{l_{e q}}}
\end{gathered}
\]
- Spring constant:
- Frequency:
\[
\omega=\frac{T}{m l_{e q}}=\frac{m g}{m l_{e q}}=\frac{g}{l_{e q}}
\]
- Length:
\[
\begin{gathered}
l=\sqrt{l_{e q}^{2}+x^{2}} \approx l_{e q}+\frac{x^{2}}{2 l_{e q}} \approx l_{e q}+\frac{\left(A_{T} \cos \omega t\right)^{2}}{2 l_{e q}} \approx l_{e q}+\frac{A_{T}^{2}}{2 l_{e q}} \cos 2 \omega t \\
P_{T}=\frac{A_{T}^{4} k_{0} \phi \omega}{2 l_{e q}^{2}}
\end{gathered}
\]
- Power:
- Energy:
\[
E_{T}=\frac{k_{0}\left(l_{e q}-l_{0}\right) A_{T}^{2}}{2 l_{e q}}+O\left[A_{T}^{4}\right] \approx \frac{T A_{T}^{2}}{2 l_{e q}}=\frac{k_{T} A_{T}^{2}}{2}
\]

- Energy still 2nd order but power 4th order

\section*{But what about pendulums?!}
- In a pendulum, mass really moves on an arc.
- Doesn't matter!
- Normal mode analysis can't tell the difference!
- Eigenmodes are always linear in coordinates used.
- Analyze in \(r\),theta \(->\) eigenmode is arc
- Analyze in \(x, z\)-> eigenmode is straight line
- Same frequencies!

\section*{What about pendulums (ii)}
- Two independent reasons why pendulums have low loss.
» Restoring force is sideways component of tension
» Energy may then be off-loaded into gravitational potential -> stretch of spring less even than second order
- Depends on bounce and pendulum mode frequencies
» Usual case, bounce frequency high -> mass moves on arc.
» Very low bounce frequencies (superspring) -> mass really does move horizontally

\section*{Dissipation Dilution and Mathematica Toolkit}
- Solution used in toolkit:
» Keep a separate stiffness matrix \(\mathrm{P}_{\mathrm{i}}\) for each elastic element
» For all elasticity types that depend on tension
» Compute potential matrix once normally
» Recompute with tension zeroed out.
» Apply damping to stiffness components that persist with tension off
- Need to do analogous thing for ANSYS
- Difficult because detailed potential data not available, or at least not easy to access.

\section*{Test Case for ANSYS: Violin modes of a fibre}
- Fibre under tension behaves as if shortened by flexure correction at each end
- Energy of two types
» Longitudinal stretching from bending out of straight line (low-loss)
\[
E_{V L}=\frac{T}{2} \int_{0}^{L}\left(\frac{d y}{d x}\right)^{2} d x
\]
» Bending energy (lossy)
\[
E_{V B}=\frac{Y I}{2} \int_{0}^{L}\left(\frac{d^{2} y}{d l^{2}}\right)^{2} d l
\]

\section*{Fibre results}
- Fused silica, 350 mm long, 0.45 mm diameter
- Integrand of the two types
» Longitudinal ->
» Total 17.3 mJ for 10 mm amplitude
» Bending ->
» Total 0.256 mJ for 10 mm amplitude
- Dissipation dilution factor 67.6
- Will compare to ANSYS

```

