
LIGO Laboratory 1

Thermal Compensation Experience in
LIGO

Phil Willems- Caltech

Virgo/LSC Meeting, Cascina, May 2007

LIGO-G070339-00-Z



LIGO Laboratory 2

The Essence of the Problem, and of its
Solution

Power recycling cavity Arm cavity

Optical power absorbed by the ITM creates a thermal
lens in the (marginally stable) recycling cavity,
distorting the RF sideband fields there.

ITM ETMPRM

Add optical power to the ITM to erase the thermal
gradient, leaving a uniformly hot, flat-profile
substrate.
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LIGO CO2 Laser Projector
Thermal Compensator

CO2

Laser

?

Over-heat
Correction

Inhomogeneous
Correction

Under-heat
Correction

ZnSe
Viewport Over-heat pattern

Inner radius = 4cm
Outer radius =11cm

•Imaging target onto the TM limits the effect of diffraction spreading

•Modeling suggests a centering tolerance of 10 mm is required
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CO2 Laser Projector Layout

 Image planes here, here, and at ITM HR face

over-heat
correction

under-heat
correction
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Thermal Compensation as
Installed



TCS Servo Control
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Thermal Compensation Controls
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Heating Both ITMs in a
Power-Recycled Michelson

No Heating 30 mW 60 mW 90 mW

120 mW 150 mW 180 mW Carrier
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RF Sideband Power Buildup

•Both ITMs
heated
equally

•Maximum
power with
180 mW total
heat
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RF Sideband Power Buildup

•Only ITMy
heated

•Maximum
power with
120 mW total
heat

•Same
maximum
power as
when both
ITMs heated
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Common-mode Bulls-eye Sensor

 Good mode overlap of
RF sideband with
carrier determines
optimal thermal
compensation- so we
measure the RF mode
size to servo TCS.

 Sensor output is
proportional to LG10
mode content of RF
sidebands.
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Differential TCS- Control of AS_I

AS_Q: RF sidebands at dark
port create swinging LO
field- when arm imbalance
detunes carrier from dark
fringe signal appears at
quadrature phase

AS_I: dark fringe means no
carrier, RF sideband
balance means no LO at
this phase- there should be
no signal.

Yet, this signal dominates the
RF photodetection
electronics!
--there must be carrier
contrast defect
--there must be RF
sideband imbalance
--apparently, slightly
imperfect ITM HR surfaces
mismatch the arm modes,
creating the contrast defect.
TCS provides the cure.
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Thermal Time Scales

 After locking at high
power, the heat
distribution in the
ITM continues to
evolve for hours.
To maintain
constant thermal
focusing power
requires varying
TCS power.

 In practice, constant
TCS power is often
enough.



TCS Noise Issues
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TCS Noise Coupling Mechanisms

 Thermoelastic (TE)- fluctuations
in locally deposited heat cause
fluctuations in local thermal
expansion

 Thermorefractive (TR)-
fluctuations in locally deposited
heat cause fluctuations in local
refractive index

 Flexure (F)- fluctuations in locally
deposited heat cause fluctuations
in global shape of optic
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Flexure Noise- A Simple Model

probe beam

heating

heating

slat mirror

CM line

A very skinny mirror
with ‘annular’ heating

The probe beam sees the
mirror move at the
center due to wiggling
far from center
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TCS Injected Noise Spectrum
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TCS-Induced Transients

 Upgraded TCS
controllers use rotating
polarizers to adjust
power.

 Every 10 seconds, the
polarizers reorient.

 Every 10 seconds a
glitch appears in TCS.

 Most glitches are well
below LIGO sensitivity.

 After discovering this
mechanism, polarizer
stage motion was
smoothed.

Impulses in TCS output can produce impulsive signals in the
interferometer output: laser switching, mode transitions, and more
obscure sources of noise…



Quality of Compensation
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Projector Heating Patterns

Annulus Mask Central Heat Mask

•Intensity variations across the images due to small laser spot size

•Projection optics work well
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Expected Profile of Thermal Lens

Expected uncompensated phase profile. Expected compensated phase profile.
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Actual Profile of Thermal Lens
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‘Gold Star’ Mask Design

“star”- from hole pattern
“gold”- gold coating to reduce power

absorption
Hole pattern is clearly not ideal but

diffraction and heat diffusion
smooth the phase profile
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Improved Carrier Power with Gold Star
Mask

Why this helps the carrier is
mysterious, but we’ll take it

optical gain up 5%

carrier recycling gain up 10%

Note: no similar
improvement in the
sideband power was
observed



Enhanced LIGO TCS
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Our Need for Power

 Initial LIGO runs at ~7W input power

 Enhanced LIGO will run at ~30W input power
» 4-5x more absorbed power

» Naively, ~4-5x more TCS power needed

» Practically, more power even than this may be needed since LIGO
point design is meant to make TCS unnecessary at 6W

» Or less power, if we can clean the mirrors

» Correction of static mirror curvature errors clouds this picture

 Our current projectors are not adequate
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Test Mass Absorption Measurement
Technique-Spot Size
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Enhanced LIGO TCS Projector
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Axicon design proposed by II-VI for
Enhanced LIGO

The Axicon
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Conclusions

 TCS becomes essential instantly after it is installed.

 TCS works even though thermal lens is poorly
known.

 TCS is flexible (all three IFOs have different
installations).

 The external projector design is flexible and easy to
maintain.

 Unexpected behaviors and uses (e.g. AS_I, carrier
arm coupling, static correction) appear during
commissioning.

 Noise couplings and injections can be rich but are
predictable, measurable, not fatal.


